
Walisson Chaves Ferreira Pinto

Ensemble Grey and Black-box System
Identification for Friction Models

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Engenharia Mecânica of PUC-Rio in partial fulfillment of the
requirements for the degree of Mestre em Engenharia Mecânica.

Advisor: Prof. Helon Vicente Hultmann Ayala

Rio de Janeiro
March 2021

DBD
PUC-Rio - Certificação Digital Nº 1821050/CA



Walisson Chaves Ferreira Pinto

Ensemble Grey and Black-box System
Identification for Friction Models

Dissertation presented to the Programa de Pós–graduação em
Engenharia Mecânica of PUC-Rio in partial fulfillment of the
requirements for the degree of Mestre em Engenharia Mecâ-
nica. Approved by the Examination Committee:

Prof. Helon Vicente Hultmann Ayala
Advisor

Departamento de Engenharia Mecânica – PUC-Rio

Prof. Hans Ingo Weber
Departamento de Engenharia Mecânica – PUC-Rio

Prof. Roberto Zanetti Freire
Escola Politécnica - PUCPR

Rio de Janeiro, March the 24th, 2021

DBD
PUC-Rio - Certificação Digital Nº 1821050/CA



All rights reserved.

Walisson Chaves Ferreira Pinto

Bachelor in Mechanical Engineering, graduated from the Pon-
tifical Catholic University of Minas Gerais (PUC Minas) in
2017.

Bibliographic data
Pinto, Walisson Chaves Ferreira

Ensemble Grey and Black-box System Identification for
Friction Models / Walisson Chaves Ferreira Pinto; advisor:
Helon Vicente Hultmann Ayala. – 2021.

123 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Engenharia Mecânica,
2021.

Inclui bibliografia

1. Engenharia Mecânica – Teses. 2. Identificação de
Sistemas. 3. Algoritmos Evolucionários. 4. Conjuntos. 5.
Modelos de Atrito. 6. Modelos Substitutos.
I. Ayala, Helon Vicente Hultmann. II. Pontifícia Universidade
Católica do Rio de Janeiro. Departamento de Engenharia
Mecânica. III. Título.

CDD: 621

DBD
PUC-Rio - Certificação Digital Nº 1821050/CA



Acknowledgments

I would like to thank my mother Maria for her support over all these
years. Without her help I wouldn’t have made it this far. Thank you for your
love for me.

I would like to thank my advisor, Prof. Dr. Helon Vicente Hultmann
Ayala, for all the times he encouraged, helped and advised me. Thank you for
all the teaching and patience over the past few years.

I would also like to thank all the friends I made during the last few years
at PUC-Rio.

Thank you to PUC-Rio for the Master’s scholarship provided.
This work has been supported by the National Council of Scientific and

Technological Development of Brazil (CNPq) through the grant 164794/2018-
2.

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

DBD
PUC-Rio - Certificação Digital Nº 1821050/CA



Abstract

Pinto, Walisson Chaves Ferreira; Ayala, Helon Vicente Hult-
mann (Advisor). Ensemble Grey and Black-box System Iden-
tification for Friction Models. Rio de Janeiro, 2021. 123p. Dis-
sertação de Mestrado – Departamento de Engenharia Mecânica,
Pontifícia Universidade Católica do Rio de Janeiro.

The mathematical abstraction of a physical process is essential in en-
gineering problems, as it can often be impractical or impossible to perform
experiments on the real system. Besides, mathematical models are more flexi-
ble than physical prototypes, allowing for quick refinement of system designs
to optimize various performance measures. The applications of the models can
be divided into four parts, namely: design, estimation, control and monitoring.
Some specific applications are i) simulations, ii) soft sensors, iii) performance
evaluation, iv) statistical quality control and, v) fault detection and diagnosis.
This work aims to: i) develop different classes of models capable of accurately
simulating the output variable of a system, ii) evaluate the efficiency of opti-
mization algorithms used in the parameter estimation task, iii) assess which
friction model is the most appropriate to describe this phenomenon in a posi-
tioning system. The results showed that the friction in the positioning system
presents a nonlinear and asymmetric behavior since some terms of the friction
models related to the positive and negative velocities are significantly diffe-
rent from each other. The final result of the optimization process that used
a local search algorithm was highly dependent on the initial conditions and
the number of estimated parameters, which increased the simulation error.
However, better estimates of the output variable were achieved when this ap-
proach was combined with other models of different classes. Through this last
approach, the relative error was reduced by more than 20%. The simulations
performed with the parameters estimated by the evolutionary algorithms were
more accurate, they were able to reduce the relative error by almost 30% when
compared with the local search algorithm. Considering the second case study,
the decision tree-based optimizer proved to be equally effective compared to
evolutionary algorithms. The relative error of the simulations using the para-
meters estimated by these algorithms was less than 8%. Besides, the shape of
the friction reconstructed in the second joint of the robotic manipulator th-
rough the parameters estimated by the algorithms is in accordance with the
expected.
Keywords

Mechanical Engineering - Thesis; System identification; Evolutionary
Algorithms; Ensembles; Friction Models; Surrogate Models
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Resumo

Pinto, Walisson Chaves Ferreira; Ayala, Helon Vicente Hultmann.
Identificação de Sistema Conjunto Caixa-Cinza e Caixa-
Preta para Modelos de Atrito. Rio de Janeiro, 2021. 123p.
Dissertação de Mestrado – Departamento de Engenharia Mecânica,
Pontifícia Universidade Católica do Rio de Janeiro.

A abstração matemática de um processo físico é essencial em problemas
de engenharia, pois muitas vezes pode ser impraticável ou impossível realizar
experimentos no sistema real. Além disso, modelos matemáticos são mais
flexíveis que protótipos físicos, permitindo um rápido refinamento dos projetos
do sistema para otimizar várias medidas de desempenho. As aplicações dos
modelos podem ser divididas em quatro partes, a saber: projeto, estimativa,
controle e monitoramento. Algumas aplicações específicas são i) simulações, ii)
soft sensors, iii) avaliação de desempenho, iv) controle estatístico de qualidade
e v) detecção e diagnóstico de falhas. Este trabalho visa então: i) desenvolver
diferentes classes de modelos capazes de simular com precisão a variável de
saída de um sistema, ii) avaliar a eficiência dos algoritmos de otimização
utilizados na tarefa de estimação de parâmetros, iii) avaliar qual modelo
de atrito é o mais adequado para descrever esse fenômeno em um sistema
de posicionamento. Os resultados mostraram que o atrito no sistema de
posicionamento apresenta comportamento não linear e assimétrico, já que
alguns termos dos modelos de atrito relacionados às velocidades positiva e
negativa são significativamente diferentes um do outro. O resultado final do
processo de otimização que usou um algoritmo de busca local foi altamente
dependente das condições iniciais e do número de parâmetros estimados, o
que elevou o erro de simulação. Entretanto, melhores estimativas da variável
de saída foram alcançadas quando essa abordagem foi combinada com outros
modelos de diferentes classes. Através dessa última abordagem o erro relativo
foi reduzido em mais de 20%. As simulações realizadas com os parâmetros
estimados pelos algoritmos evolucionários foram mais acuradas, eles foram
capazes de reduzir o erro relativo em quase 30% quando comparados com o
algoritmo de busca local. Considerando o segundo estudo de caso, o otimizador
baseado em árvores de decisão se mostrou igualmente eficaz se comparado aos
algoritmos evolucionários. O erro relativo das simulações usando os parâmetros
estimados por esses algoritmos foi inferior a 8%. Além disso, a forma do atrito
reconstruído na segunda junta do manipulador robótico através dos parâmetros
estimados pelos algoritmos está de acordo com o esperado.

Palavras-chave
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1
Introduction

High-precision motion control plays a key part in positioning and han-
dling applications, it is used in computer numerically controlled machines,
robot manipulators, XY plant, microelectronics assembly units, and electrome-
chanical devices. Some specific applications are in semiconductor manufactur-
ing, laser and materials processing, optical inspection systems, additive manu-
facturing, or industrial digital printing [1]. The compensation of nonlinearities
plays an important role in high-precision actuators [2]. Friction is one of these
nonlinearities, which is often responsible for the poor performance of their
components [3]. Modeling and identification are key aspects to understand
the friction and design controller so that the influence of friction can be over-
come [1].

The concept of a system can be defined in such a broad way that most
things in our environment will become systems: the solar system, a vehicle
moving on the road, human speech generation. That is why the term system
is used not only in engineering, but also in science, economics, sociology, and
politics. It can be defined as a collection of components that act together to
perform a certain objective, whose properties we want to study, i.e., it is a
part of the universe that is of our interest [4, 5]. As part of the universe, a
system interacts with its environment according to the variables that originate
outside the system and are not directly dependent on what happens in it. On
the other hand, some variables are generated by the system as it interacts with
the environment. The former and the latter variables are referred to as inputs
and output variables.

Often, we have many questions about the system or its subsystems (such
as the quarter of the vehicle cited earlier) properties. In this context, by the
analysis of the system, one can predict how it will respond to various inputs
and how that response changes with different values of the system parameters.
Many questions concerning a system can be answered by experimentation,
but it has limitations such as cost, danger, or the system does not yet exist,
which makes experimentation impracticable sometimes. Simplified versions of
the systems, known as models, can be used to answer questions about them.

Models are present in our everyday life all the time and play an important
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1.1 - System Identification 17

role. We can use a model to explain a variety of phenomena in our surroundings.
It is a tool used to answer questions about a system without the need to
experiment. In [4] models are classified into four different categories: mental,
verbal, physical, and mathematical. When one is learning how to drive a car,
he/she develops a mental model of the car’s driving properties. A verbal system
is qualitative, and it is used to describe the reaction of the system according to
certain given stimuli. For instance, if one does not eat anything, then he/she
will get hungry. A more formal example of verbal models is experts systems.

The remaining models try to imitate the system. Physical models, such
as a small scale of a ship, aircraft, house are built to test and/or investigate
some properties of the system under realistic conditions. In this work, the focus
is on the mathematical models, which give the notion of how the variables of
the system relate to each other.

1.1
System Identification

The aim of system identification (SI) is the development of an appropriate
model (mathematical description) of a system based on observed data. SI plays
a crucial role in the field of control system engineering since a controller will
be designed based on a known mathematical or an estimated model so that a
precise output response of the system can be satisfied [6]. The resulting model
may have many applications such as simulations, optimization, predictions,
controller design, fault detection and diagnosis [7]. Due to the importance and
usefulness of SI many reading options on this subject are available [7–11].

An important part of the system identification procedure is concerned
with the choice of the model structure. It should be used prior knowledge
and physical insights about the system for the task of selecting the model
structure [12]. According to the amount of prior knowledge, models can be
classified as black, grey, and white-box. In the former model, one assumes
an identification problem with an unknown model structure of a system, this
model does not have any physical interpretation. It is built based on observed
data alone, it means that no physical insight is available or used. In this case,
the model describes the experimental data without any physical interpretation
of its parameters [8, 12]. On the other hand, if one uses a priori knowledge in
the model development process, assuming that the model structure is known,
it is called a grey-box model, which is physically meaningful, i.e., it has some
correspondence to the physics of the process. In this case, parameters must be
determined from observed data though [13]. In the latter, the model is perfectly
known, and its structure and parameters are entirely determined based on first
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principles.
After the selection of a candidate model, the next step is its estimation,

which is the parameter estimation phase. It is essentially an optimization prob-
lem that uses the given data to estimate the parameters of the model. There
are a variety of estimation methods available: the Method of Moments, Least-
Squares (LS), Maximum Likelihood Estimation (MLE), Bayesian methods, and
instrumental variable methods. Some of them are commonly used for standard
parameter estimation, but they lack robustness in the search for global opti-
mum if the search space is not differentiable or linear in the parameters, since
they are essentially local search techniques that search for the optimum by us-
ing some gradient-based method. It means that they may get stuck in a local
optimum without finding a global optimum [14]. Different classes of algorithms
have been also used for the task of system identification, such as artificial neu-
ral networks (ANN) [15–19], Evolutionary Algorithms (EAs) [20–24], swarm
intelligence [25–29].

As mentioned before, SI is used for a variety of purposes, including
studies concerning systems with friction, which is an overly complicated
phenomenon that has been studied over the centuries, but still, there is no
universally accepted theory to clarify. Friction is associated with the resistance
to the relative motion between two surfaces in contact and it is a complex
nonlinear phenomenon [30]. Friction occurs in all mechanical systems and has
a strong influence on their performance and behavior. The studies of friction
models have been driven because of engineering needs since friction is an
especially important variable in the design of drive systems, high-precision
servo mechanisms, robots, pneumatic and hydraulic systems [31].

1.2
Literature Review

In the modeling procedure, the models to be determined traditionally
range from black-box to white-box models. In the former, experimental data of
the process are used to obtain an appropriate model without taking particular
account of the physical system. It means that the parameters of the model are
viewed as vehicles for adjusting the fit to the data, not reflecting physical
considerations in the system. In the latter, the structure and parameters
are entirely determined based on first principles. In this case, the model
is based on physical laws and additional relationships with corresponding
physical parameters. There is an intermediate model category called grey-box
in which the object of modeling is predefined and a priori information is used
to determine unknown parameters. In this case, the models have adjustable
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parameters with physical interpretation, since some of them are uncertain or
not well known and if one desires to obtain realistic predictions the parameters
can be estimated from the data [9, 11, 13].

In SI grey-box models have a wide field of applications. They can
be used for modeling building thermal behavior [32], describing pipe (or
duct) temperature [33], modeling of residential heating, ventilation and air
conditioning system [34], and modeling of homogenous charge compression
ignition engines [35]. Several contributions of grey-box identification applied
to mechanical systems can be found in the literature.

In [36] the authors proposed an identification procedure that uses inter-
mediate local models. The work addresses the problem of estimating unknown
parameters in a nonlinear grey-box model. Two standard parameter estima-
tors, namely nonlinear Least-Squares and logarithmic Least-Squares (NLS and
LLS), as well as the selection of weights in the estimators, have been studied.
The procedure was successfully applied to the problem of identifying elastic-
ity parameters in a six-axis industrial robot since the identified model gives a
good global description in the frequency range of interest, moreover, the ob-
tained model should be useful for many future purposes. In the work of [37]
a model predictive control (MPC) for the force tracking control of an electro-
hydraulic servo system (EHSS), which is highly nonlinear, is presented. The
authors built a nonlinear mathematical model, which parameters are identified
using the trust region reflective Newton method of nonlinear Least-Squares. A
linearized version of the nonlinear state-space model acquired via the grey-box
system identification method at the initial operation point is adopted for the
MPC control of force tracking. The control performance was compared between
and among proportional integral control (PIC), MPC, and hybrid MPC–PIC
controller, which achieved the most robust performance in the simulation and
experiment.

A very popular technique used for identifying robot parameters is the
Inverse Dynamic Identification Model (IDIM), which provides the joint force
in terms of the joint position, velocity and acceleration. The authors of [38]
performed the identification of an industrial collaborative robot based on the
classical IDIM Least-Squares (IDIM-LS) method. They have noticed that the
identified inertial and friction parameters using the Least-Squares method had
unrealistic values. To deal with this issue the authors performed a numerical
optimization based on the quadratic error between the measured and estimated
torques. Another criterion was added because the inertia matrix of the robot
must be strictly positive. In general, the parameters were identified with
sufficient accuracy, but the inaccuracy of some parameters raised by the fact
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that the authors used a simplified friction model used for nonzero velocities
that considers dry and viscous friction in every joint.

In the work of [39], the IDIM formulation was used for the identification of
a 1 Degree of Freedom (DOF) robot. Least-Squares optimization, Instrumental
Variable (IV) optimization, and an Automated Instrumental Variable were
applied for the task of estimating the parameters of an Electro-Mechanical
Positioning System. The IDIM-LS approach is generally used for purposes
of robot identification but it may lack robustness because of the closed-
loop structure required for robot operation. The second approach tries to
deal with this issue, but both rely on a priori knowledge or require tuning
parameters of filters. In the last approach, the identification of the additive
noise characteristics was included so that correct and lower variances of the
IDIM parameters can be achieved in an automated way. The third method
seems to be more appropriate to identify the dynamic parameters than the
two others, showing to be robust against noises. In the work of [40], the
authors identified the dynamic parameters of a 6 DOF industrial robot. They
used a nonlinear weighted Least-Squares formulation (WLS) under nonlinear
constraints in the dynamic parameters for the identification problem, this
technique aims to prevent the effects of inaccurate data. The identification
method was efficient since the parameters lead to a positive definite inertia
matrix. There are other works on the subject of identifying dynamic parameters
of robots, such as [41–43].

There are also many applications for the black-box approach. In [44]
the authors used a nonlinear autoregressive with exogenous inputs (NARX)
neural network to enhance cardiovascular rehabilitation therapies. The focus
of the authors was the relationship between the required exercise (machine
resistance) and the patient’s heartbeat for an optimal training configuration.
The model was efficient to reproduce the evolution of the heart rate in
controlled cardiovascular aerobic training. In the work of [45], a NARX ANN
model for forecasting groundwater levels of three different sorts of aquifers
was applied. Forecasts of lead times up to half a year were conducted. The
results of their studies have shown that the NARX ANN models are well
suited to perform groundwater predictions for uninfluenced observation wells
in all aquifer types studied. In [46] the authors introduced a time-dependent
functional NARX methodology for the development of aircraft virtual sensors,
the authors focused on the angle-of-attack for the main flight regimes. The
main flight regimes (landing, take-off, clean flight) of a small commercial
aircraft were considered for three different virtual sensor designs. Through
a nonlinear 6 DOF simulation environment the performance of the developed
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virtual sensors was tested, they showed to meet the design requirements since
they achieved simulation errors lower than the required. In the work of [47]
a hybrid of conventional backpropagation training algorithm for the NARX
network and multi-objective differential evolution algorithm for identification
of the nonlinear dynamics of an un manned small-scale helicopter from
experimental flight data was proposed. This approach was able to yield a set
of Pareto-solutions with an optimal compromise between model accuracy and
model complexity. In the work of [48] different physics-based and black-box
approaches, such as Maxwell-Slip models and neural networks, were used to
model the nonlinear dependence of pre-sliding and sliding friction forces on
displacement and velocity. The models have shown a suitable capability of
friction prediction. An ensemble of the best prediction models was also built,
bringing performance improvement.

Employed in various fields of knowledge, population-based, nature-
inspired or evolutionary algorithms (EAs) are mainly used to solve optimiza-
tion tasks, which also include the SI parameter estimation procedure. These
algorithms are a class of metaheuristic algorithms [49]. They are global search
methods, which means that they do not search for a point that is only locally
optimal. Differently from local optimization methods an initial estimate for
the optimization variable, which can considerably influence the objective value
of the local solution obtained, is not required [50].

These algorithms are useful in a variety of applications, such as nonlinear
system identification [51], to detect structural damage [52], on the identification
of hysteretic system [53], and others [54–56]. In the work of [57] ant colony
algorithms, which are motivated by the pheromone-depositing behavior of ants,
were successfully used to automatically search and optimize the parameters of a
stochastic resonance method, which is employed for the diagnosis of failures in
planetary gearboxes. An ant colony algorithm was also successfully addressed
to the task of modal parameter estimation of dynamical systems in the work
of [58].

In the work [59] a population-based algorithm has been used for the
selection of the optimal health indicator (HI) that is applied to measure
the amount of equipment degradation. A multidimensional binary differential
evolution algorithm (DE) was chosen for this purpose. This approach was
used for the prediction of the remaining useful life of a fleet of turbofan
engines working under variable operating conditions being able to provide
more satisfactory HIs compared to those found in the literature. The authors
of [60] utilized a DE strategy for parameters estimation of an 8-DOF and a 20-
DOF structural system. No prior knowledge of mass, damping, or stiffness
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is considered and the effectiveness and applicability of the DE algorithm
for structural parameters estimation have been investigated. Comparative
studies show that the DE algorithm is superior compared to a particle swarm
optimization algorithm (PSO) for hard unknown mass problems and almost
as good as the modified genetic algorithm.

In the work of [61] a Genetic Algorithm (GA) with an automatically
adjustable probability of crossover and mutation is used to search for the
optimal PID controller parameters for a robotic excavator trajectory control.
This strategy was used to avoid premature convergence and stagnation in
looking for the global optimal solution of the standard GA (SGA). The
improved GA (IGA) based PID tuning method has shown to be superior when
compared with a standard GA and a Ziegler–Nichols-based PID controller
method. Moreover, the IGA algorithm was effective for improving tracking
accuracy. In the work of [62], an improved GA to optimize the design of a
fuzzy PID controller was proposed. The method proposed by the authors aims
to regulate the opening of a throttle valve. The authors have improved the
initial population generation, adaptive selection, and genetic operators of the
SGA. The proposed controller performance was superior in terms of rising
time, adjustment time, overshoot, and steady-state error when compared with
the traditional GA-PID, fuzzy adaptive PID, PSO-PID, and a PID controller
based on Back-Propagation neural network. The IGA controller was able to
significantly improve the performance of the wellhead back pressure control
system.

Biogeography-Based Optimization (BBO) is a heuristic inspired by the
science of biogeography used for optimization. It has been used for classifi-
cation problems [63, 64], optimal design problems [65, 66], robot path plan-
ning [67], ANN hyper-parameter and structure optimization [68], and mainly
for scheduling problems [69–73]. However, BBO has been rarely used for pa-
rameter estimation tasks [74].

Another common optimization algorithm that has been used for parame-
ter identification is the Particle Swarm Optimization, which is inspired by the
social behavior of bird flocks. Improvements to the standard PSO were pro-
posed after its development [28,75,76], however, its standard version is still in
use [77]. In the work of [78] the parameters of a Bouc–Wen hysteretic system
are identified by two variants of the PSO algorithm. They were compared with
other identification methods being able to outperform them, showing to be
very accurate concerning all Bouc–Wen model parameters. The authors of [25]
have applied a social-emotional PSO algorithm for the identification of the
parameters of a planar 2-link manipulator. The proposed PSO algorithm has
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proven to be more successful in terms of parameter accuracy than a GA and
a standard PSO algorithm.

Surrogate models can also be used for optimization tasks. In this ap-
proach, a model acts as a model of a more expensive model by approximating
its input-output responses [79]. Bayesian optimization and tree-based regres-
sion are examples of such a method. The former method is commonly used
for hyperparameter optimization/tuning [80–83], such as in deep neural net-
works (DNN) [84]. Bayesian optimization is also used for autonomous process
setup [85,86], for system identification in biological systems [87], it is also ap-
plied to real-time control [88]. However, this method has been little explored in
parameter identification tasks [89–91]. The authors of [92] applied a Bayesian
probabilistic approach to a finite element model of a bridge to estimate the
mechanical properties of its constituent materials and foundation soil stiffness.
The tree-based algorithm is another surrogate model that can be used for con-
trol applications [93], forecasting [94], classification [95], and optimization [96]
and prediction problems [97].

Ensemble systems have proven to be highly effective and versatile in real-
world problem domains and applications [98]. Some examples of the application
of the ensemble approach are load forecasting [99–101], output power forecast
[102,103], and fault detection [104]. In the work of [105], a tribometer was used
as an experimental rig for the modeling of dry friction using a NARX type
shunting ANN model. They also constructed an ensemble model by combining
the shunting neural network model with the physics-based dynamic nonlinear
regression Maxwell slip model, which achieved good accuracy in modeling the
overall dynamical behavior. The authors of [106] used three real data sets to
explore a hybrid methodology that combines both ARIMA and ANN models,
the aim was to take advantage of the unique strength of each model. The
results indicate that the combined model can be an effective way to improve
forecasting accuracy achieved by either of the models used separately.

1.3
Motivation

Factors such as the need for models in process analysis and automa-
tion and the practical limitations of the first-principles approach in developing
models motivate the need for identification. The benefits provided by models
are enormous, as they are applicable for a variety of process systems engineer-
ing, namely, design, estimation, control, and monitoring. As stated previously,
because of safety and/or economic reasons, experimentation might be impracti-
cable or even impossible. That is why models are used especially for simulation
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and predictions, which are the main incentives of model development, as they
offer a cost and time-effective, safe alternative to experiments.

Conventional search techniques are useful, but they are not robust in the
task of estimating the parameters of a model. They are point-to-point methods,
moving from a single point in the search space to the next using some transition
rule to determine the next point. Their iteration is restricted on each datum
received since they need new data to direct the search [14]. As an alternative,
algorithms that search for the global optimum by employing mechanisms to
search larger parts of the search space might be employed. EAs are examples of
such an approach. EAs use a population of individuals, i.e., they search from
a population, not a single point. It allows EAs to simultaneously evaluate
many points in the search space and the assumption that the search space
is differentiable or continuous is not necessary. But both local and global
optimization techniques can be combined to form hybrid algorithms [107,108].

Over the past two decades, the idea of combining models/algorithms has
received increasing attention from the computational intelligence and machine
learning community. Ensemble systems have proven to be highly effective and
versatile in real-world problem domains and applications, which motivates the
use of such a method.

1.4
Research Objectives and Contributions

The general objective of this work is to develop different classes of models
capable of accurately simulating the output variable of a system and to evaluate
the efficiency of optimization algorithms used in the parameter estimation task.
Besides, this study aims to assess which friction model is most appropriate to
describe this phenomenon in a positioning system. The specific objectives are:

(i) Estimate the dynamic parameters of an electromechanical positioning
system (EMPS) adopting different friction models in their asymmetric
and symmetric versions;

(ii) Combine models from different classes, for example, grey-box and black-
box, to more accurately simulate the output variable of the system;

(iii) Estimate the dynamic parameters of a robotic manipulator considering
a nonlinear friction model with Stribeck effect;

(iv) Evaluate the efficiency of different algorithms in the task of estimating
the dynamic parameters of the EMPS and the robotic manipulator;
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(v) Evaluate different friction models, investigating which of their versions
(asymmetric or symmetric) can better describe the friction behavior of
the EMPS.

The contributions of this work are the following:

(i) Identification of the dynamic parameters of a positioning system using
local and global search algorithms;

(ii) Development of a hybrid model capable of predicting the position of the
load in a positioning system;

(iii) Combination of different models capable of predicting the output variable
of a positioning system more accurately than individual models;

(iv) Performance evaluation of five evolutionary algorithms on the task of
estimating the parameters of a positioning system;

(v) Comparison of four friction models in their asymmetric and symmetric
versions;

(vi) Identification of the dynamic parameters of a TX40 robot considering a
nonlinear friction model with Stribeck effect.

1.5
Dissertation Outline

The rest of the dissertation is structured as follows. Chapter 2 presents
the general procedure of a system identification task, while Chapter 3 intro-
duces basic concepts of optimization and some algorithms used to estimate
parameters in a system identification process. Chapter 4 includes an overview
of different friction models, indicating the difference between asymmetric and
symmetric approaches. Two case studies are presented in Chapter 5. Chapter
6 is dedicated to presenting the contributions of this dissertation. The conclu-
sions and suggestions for a future work are in Chapter 7.
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2
System Identification Procedure

The aim of SI is the development of an appropriate model (mathematical
description) of a system based on observed data from the system [7]. SI
can be seen as the interface between the real world of applications and the
mathematical world of model abstractions [109]. This makes techniques of
system identification wide applicable since dynamic systems are abundant
in our environment [9]. Figure 2.1 describes schematically a task in System
Identification.

Figure 2.1: System identification is concerned with the development of math-
ematical models using the measured output of a system to a given input. The
model should be a suitable (mathematical) description of that system. Adapted
from [11].

Three general representations of an open system are shown in Figure
2.2. The notion of a system is a broad concept, a system is an object in which
different kinds of variables interact at time and space scales and that produces
observable signals [9,11]. Both representations of [11] and [7] add a sensor box
as a static element to emphasize the need of monitoring the systems to produce
observable signals, i.e., this representation considers the sensor as being part
of the dynamic system. [7] portrays a system as actuators associated with a
process.

According to Figure 2.2, we may distinguish the variables of the system:
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Figure 2.2: General representations of a system. A system has an input u,
actuators, possible measured disturbance w, disturbance v, the system state
x, and the output y of the system. These are signals that are measured and
which one desires to predict, and the process. In (b) and (c) a sensor box acts
as a static element to emphasize the need of monitoring the system. In (c)
the system is even portrayed as actuators associated with a process. Adapted,
respectively, from [9], [11], and [7].

(i) Input u: is an exogenous (external), measurable signal that can be
manipulated directly by the observer;

(ii) Output y: observable signals that are of interest to the user, which are,
in general, modeled as a function of the other signals;

(iii) State x : it summarizes all the effects of the past inputs u and disturbances
w to the system;

(iv) Disturbance w: this disturbance is an exogenous, possibly measurable
signal. It originates from the environment and cannot be manipulated,
acting as external stimuli directly affecting the behavior of the system;

(v) Disturbance v: it is also an exogenous signal, which cannot be manipu-
lated and represents the uncertainty (noise) measured;

(vi) Actuators: final control elements, which are responsible for exciting the
process;

(vii) Process: It is what one wishes to identify.
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The task of identification is the process of finding a mathematical model
of a physical object, given a class of tentative models, and given a set of
response data from experiments [110]. In the next few sections, we will discuss
the identification procedure and some details of the different kinds of models,
which are the relationship between observed quantities. They allow for the
prediction of properties or behaviors of the object [109].

2.1
Procedure for Identification

System identification is approximate modeling for a specific application
based on observed data and prior system knowledge [11]. That is why in a task
of SI some points, such as (i) the data set recorded, (ii) the modeling phase,
which is the construction of a class of tentative models, and (iii) establishing
the best model are crucial [9, 110].

The procedure of system identification occurs iteratively, according to
a natural logic flow. It can be resumed by data collection, choice of a model
set, and the selection of the most appropriate one [9]. Figure 2.3 gives some
details about this procedure, which is more detailed in Figure 2.4. As one may
observe, prior knowledge plays a fundamental role in SI, since all processes are
directly or indirectly dependent on it, as we can see by Figures 2.3 and 2.4.

Figure 2.3: The system identification loop. Adapted of [9] and [11].

2.1.1
Data Generation and Acquisition

Input design is an identification-specific issue, it is all about the question
of what kind of excitation is the best for a given identification problem.
In SI a basic requirement is that the effect of the input in the measured
output is larger than those caused by sensor noise/unmeasured disturbances
[7]. It is justified because the accuracy of the estimated parameters will
depend upon the signal input, that is why instead of choosing an input
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Figure 2.4: Flowchart of the system identification procedure. Adapted of [7].

arbitrarily one should choose an optimal input. It maximizes the sensitivity
of the system output to the unknown parameters, consequently maximizing
the parameter estimation accuracy [111]. Therefore, the objective of the
experiment design/data generation and acquisition procedure is to make the
right choices so that the data become maximally informative [9].

2.1.2
Data Pre-Processing

Pre-processing of data is required as a prior condition for the estimation
phase since the data that has been collected, i.e., in its raw form, is usually
not ready to be used for model development. That is why often the data must
be submitted to quality checks and a pre-processing step before presenting it
for use by the identification algorithms [7,9]. Many factors are responsible for
data deficiency:

(i) High-frequency disturbances in the data record;
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(ii) Occasional bursts and outliers, missing data and non-continuous data
records;

(iii) Drift and offsets, low-frequency disturbances, possibly of periodic char-
acter.

Checking the stationarity of data is an important step in the Pre-
Processing phase since most identification methods require the statistical
properties of data to remain invariant with time. Low-frequency disturbances,
offsets, trends, drift, and periodic variations can be caused by external sources.
The disturbances can be removed by explicitly pretreating the data or letting
the noise model deal with them. Pre-filtering data is one approach for handling
a variety of data characteristics such as drifts and noise. It can be also used to
obtain preferentially accurate fits in selected frequency ranges.

The issue of missing data is common in several applications, it is due
to a malfunction in the sensors, power disruptions, non-uniform sampling. On
other hand, outliers may be also present, they do not conform to other parts of
the data and can be detected in a residual plot. To deal with these issues one
can cut out segments of the data sequence to avoid portions with bad data,
but it may be quite difficult to merge the remaining segments. One can also
replace the missing data appropriately by using the existing data.

2.1.3
Data Visualization

Data visualization should be considered as a key step in information
extraction and signal analysis due to the immense value of information
obtained from visual inspection of data at each stage of identification. In offline
applications, it is crucial to first plot the data to inspect them for deficiencies
cited in the previous subsection. By visual examination one may be able to
identify the presence of drifts, outliers, and other peculiarities. It also provides
an opportunity for the user to verify if the system was sufficiently excited by
the input signal. One can also examine the input and output in the frequency
domain, it is a tool to clarify the user about the spectral content and presence
of periodicities in the signal. It is useful since it is possible to obtain a first-hand
feel of the level of input excitation and the filtering nature of the system [7,9].

2.1.4
Model Development

When one interacts with a system the question is how its variables relate
to each other, one might thus assume some relationship among the observed
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signals, which is called a model of the system. A model is a map between
the set of explanatory variables (inputs) and the set of predicted variables
(outputs). The model is fundamentally a mathematical abstraction of the
physical process [7, 9]. Figure 2.5 shows some details about the difference
between a process of a system and a model.

Figure 2.5: Variables that participate in the prediction are inputs to a model,
while outputs of a model constitute those variables that we wish to predict or
explain. Adapted of [7].

Mathematical models have different properties and ways of representa-
tion, they can take quite different forms depending on the system under study.
One can have, for example, a discrete-time, first-principles, nonlinear model.
Some aspects we might use to distinguish models are:

(i) Approach to modeling: first principles vs. empirical;

(ii) System characteristics, such as linear or nonlinear, time-varying or time-
invariant;

(iii) The knowledge available to the user, e.g., deterministic or stochastic,
black-box or grey-box;

(iv) The domain of modeling, such as continuous-time or discrete-time, time-
domain or frequency-domain;

(v) Response characteristics, such as static or dynamic, lumped or dis-
tributed.

White-box models are developed from fundamentals using basic laws and
constitutive relationships resulting in causal, continuous, nonlinear differential-
algebraic equations. These models are highly effective and reliable, but simu-
lations of these models require good numerical ODE and algebraic solvers. On
the other hand, empirical models are built using measured data. Compared to
the former models, these have the benefits of requiring in their development
only a minimal knowledge of the process and that they offer flexibility in model
structure, which is useful in several applications [7].
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Empirical models can be divided into some categories. The first category
makes a distinction based on whether the model possesses a specific structure
chosen by the user or not, distinguishing them into parametric and non-
parametric models. The former possesses a specific structure and order and
is characterized by fewer parameters, while the latter do not possess any
specific structure or order but is characterized by many unknowns. While
non-parametric models can be estimated with minimal a priori knowledge,
parametric models demand from the user some a priori knowledge [7].

The general model structure of a linear, time-invariant system [9] can be
formulated as:

A(z−1)y(k) = B(z−1)
F(z−1)u(k) + C(z−1)

D(z−1)e(k) (2-1)

where

A(z−1) = 1 + a1z
−1 + · · ·+ ancz

−na

B(z−1) = b1z
−1 + · · ·+ bnbz

−nb

C(z−1) = 1 + c1z
−1 + · · ·+ cncz

−nc

D(z−1) = 1 + d1z
−1 + · · ·+ dndz

−nd

F(z−1) = 1 + f1z
−1 + · · ·+ anfz

−nf

(2-2)

y(k) and u(k)(k = 1, 2, . . . ) are the system input and output signals,
respectively, na, nb, nc, nd, and nf are non-negative integers indicating
the orders of the relevant polynomials, they are usually referred to as the
model orders; e(k) is a noise sequence which is assumed to be independently
and identically distributed with zero mean and finite variance and z−1 is
the backward shift operator. A(z−1)y(k) is the autoregressive part (AR);
B(z−1)u(k) is the exogenous (X) variable (B(z−1) represents how the input
interacts with the system); the factor F(z−1) accounts for the dynamics of the
plant that is unique to it; C(z−1) of the noise model accounts for the moving
average (MA) characteristics of the random process e(k); D(z−1) characterizes
the auto-regressive behavior of e(k). The symbol z−1 denotes the backward
shift operator, defined as z−1x(k) = x(k − 1), where x can be any signal.

The model structure presented above is a parametric description of an
input-output system, it is known as Autoregressive Moving Average with
Exogenous Input Model. One or more of the five polynomials would be fixed
to unit in some applications since this structure is too general for most
application purposes. Some special cases of Equation (2-1) are summarized
in Table 2.1. They are ARX (autoregressive with exogenous input) model,
ARMAX (autoregressive moving average with exogenous input) model, ARMA
(autoregressive moving average) model, FIR (finite impulse response) model,
BJ (Box-Jenkins) model, and OE (output error) model.
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Table 2.1: Classes of parametric models as special cases of Equation (2-1).
Polynomials used Name of Model Structure Polynomials values
AB ARX C(z−1) = D(z−1) = F (z−1) = 1
ABC ARMAX D(z−1) = F (z−1) = 1
AC ARMA B(z−1) = 0; D(z−1) = 1
BD FIR A(z−1) = F (z−1) = 1; C(z−1) = 0
BFCD BJ (Box-Jenkins) A(z−1) = 1
BF OE (output error) A(z−1) = C(z−1) = D(z−1) = 1

A nonlinear relationship between the input-output sequences gives much
richer possibilities to describe systems [9]. A nonlinear black-box structure,
such as neural networks, for a dynamical system, is a model structure that is
prepared to describe virtually any nonlinear dynamics [12]. They can be used
effectively for the identification and control of nonlinear dynamical systems
since they can approximate large classes of nonlinear functions with sufficient
precision. This makes them relevant candidates for use in dynamic models for
the representation of nonlinear plants [112].

A neural network is a massively parallel distributed processor constituted
of simple processing units, also referred to as neurons, which can store
experiential knowledge and making it available for use [113]. Layers composed
of such units are arranged so that data is entered at the input layer and passes
through either one or several intermediate layers, which are also called hidden
layers, before reaching the output layer, Figure 2.6 shows the schematic of a
single-layer neural network with one hidden layer. The difference between the
actual output and the target output of the network, the prediction error, is
used to change the connection strengths between the nodes, this is the way
the network is trained. By iterating, the weights are modified until the output
error reaches an acceptable level, i.e., the network adjusts the weights so that
the output pattern is reproduced [114].

The basic model with a single hidden layer network expresses the
prediction as a weighted sum of non-linearly transformed regressors, it is
expressed by Equation (2-3). Another class of a neural network, namely,
recurrent neural network (RNN) is sensitive to historical data, enabling this
network to have a dynamic memory function. Its schematic diagram is shown
in Figure 2.7, which is a nonlinear ARX (NARX) neural network structure.

ŷ[k] =
H∑
j=1

β1jfj

( p∑
i=1

wjixi[k]
)

(2-3)

where j = 1,..., H are the nodes in the hidden layer; xi, i=1,..., p are the
p regressors and wji is the synaptic weight of the respective neuron. The
nonlinear function fj(·) is known as the activation function.

The most important phase in a system identification procedure is the
development of an appropriate model set since the success of an identification

DBD
PUC-Rio - Certificação Digital Nº 1821050/CA



2.1 - Procedure for Identification 34

Figure 2.6: Schematic of a neural network with a single hidden layer.

application is directly dependent on the model. This phase is guided by our
prior knowledge of the system, as we can see in Figures 2.3 and 2.4. The model
development phase comprises two steps: (i) specifying a model structure and
order or the set of models, and (ii) estimating the parameters of that model
by solving the associated optimization problem [7].

One should give attention to some points for the choice of the candidate
models:

(i) Quality of the model: It is related with the accuracy and precision of the
model. One model should be selected so that both bias and variance
are kept small, which are usually conflicting requirements. In other
words, the model should be flexible enough offering good capabilities of
describing different possible systems and, not using unnecessarily many
parameters (the model should be parsimonious);

(ii) Price of the model: It is directly associated with the second step, i.e.,
with the price to calculate the model. In the second step, a criterion
function must be specified as well as the identification method to solve
the estimation problem. Two aspects influence this step, namely: (i) the
algorithm complexity and (ii) the properties of the criterion function;

(iii) End-use of the model: The end application might impose requirements.
According to the intent of using one can choose a white, grey, or black-
box model. For instance, if the intended use is in control applications it
usually suffices to use linear models. In this case, the model should be as
simple as possible.
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Figure 2.7: Typical NARX neural network structure. Adapted from [115].

After the selection of a candidate model, the next step is the parameter
estimation phase. It is essentially an optimization problem that uses the given
data, which is called estimation or training data, to estimate the parameters of
the model [7]. There are a variety of estimation methods available: the Method
of Moments, Least-Squares, Maximum Likelihood estimation (MLE), Bayesian
methods, and instrumental variable methods. The Least-Squares method is
particularly interesting because of its versatility.

Suppose we have a linear regression model structure (2-4), which is
especially useful in describing basic linear and nonlinear systems [9].

y(k) = φ1(k)θ1 + · · ·φp(k)θp + e(t) (2-4)
According to this model, the variable y is explained in terms of the

variables θ1, · · · θp, called regressors, plus an unobserved error term e. It is
assumed that the model has one unknown parameter φi for each explanatory
variable, which may be known in advance, or which has been measured. The
model (2-4) can be written in matrix notation (2-5), where Φ is an N × p

matrix with elements Φ = φj(k), j = 1, · · · , p:

y = Φθ + e (2-5)
A reasonable way to estimate the unknowns from given data is by

demanding that the prediction errors (residuals) are small, i.e., the predictions
are collectively at a minimum distance from the observations of a variable:

ε(k) = y(k)− φ(k)T θ (2-6)
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The estimation of the unknowns can be formally stated as the Least-
Squares objective function J(θ). One will choose the parameter vector θ such
that the sum of squared prediction errors is minimal:

min J(θ) =
N∑
k=1

ε2(k) =
N∑
k=1

(y(k)− φ(k)T θ)2 =
N∑
k=1

(y(k)− ŷ(k))2 (2-7)

Equation (2-7) can be rewritten in matrix notation as:

min J(θ) = εT ε = (yT − θTΦT )(y −Φθ) = (y− ŷ)T (y− ŷ) (2-8)

Solving 2-8 one may find the most efficient estimator of the parameters
that minimize the sum of squared prediction errors, which is:

θ̂LS = (ΦTΦ−1)ΦTy (2-9)
The methods mentioned above, such as LS and MLE, are commonly used

for standard parameter estimation, but they lack robustness in the search
for global optimum if the search space is not differentiable or linear in the
parameters, since they are essentially local search techniques that search for
the optimum by using some gradient-based method. It means that they may
get stuck in a local optimum without finding a global optimum [14].

2.1.5
Model Assessment and Validation

The model development phase is followed by the model quality assess-
ment, which is a fundamental part of any model development exercise. It can
be divided into model assessment and validation. From the previous proce-
dure, one picks out a model within the model candidates to elucidate whether
it has good agreement with the estimation data and whether it is good enough
for its intended use. Positive feedback of this phase means that the model
is considered appropriate and can be used, otherwise, the procedure must be
repeated [9, 11,109].

The first part of the analysis is concerned with how effectively the model
has explained the output variations in the training data, i.e., if the model
has captured the characteristics of training data with reasonable accuracy and
reliability [7]. This procedure can be performed by two different tests, namely:
(i) statistical analysis of residuals (part of the data that the model could not
reproduce) and (ii) error analysis of estimates.

The second part of the procedure, known as the cross-validation test (or
simply validation), assesses the predictive abilities of the model on a fresh
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data set [7]. In practice, this process aims to ensure that the model is useful
not only for the estimation data but also for other data sets of interest [109].
The purpose here is to evaluate the extrapolation capabilities of the model.
Another common term for this process is call generalization.

There are short-term and long-term forecasts. The one-step-ahead (OSA)
prediction, belongs to the former and is widely used in model estimation, while
the infinite-step ahead prediction belongs to the latter, which is equivalent
to simulation, it means that the actual past information is never used but
the predictions themselves are used recursively to generate the long-range
forecasts. One may use metrics such as the coefficient of determination R2

(2-12) and its variants for determining the degree of fit of predictions, which
is one of the central aims of modeling.

The prediction problem refers to the case when the information is
available up to k and we are interested in estimating future values of the signal
y[k + 1], y[k + 2], · · · , given the dataset {Z[0],Z[1],· · · ,Z[k]}. The predictions
are denoted as:

ŷ[k + 1|k] One-step ahead predictor (2-10)

ŷ[k + p|k] p-step ahead predictor (2-11)
The quality of the results can be also assessed by computing the relative

error ε (2-13) of the simulation using the estimated parameters. The optimal
result is found when the relative error is equal to zero. Any improvement of
new solutions can be checked by calculating the improvement percentage ∆(%)
(2-14). Positive values indicate an improvement of the new model. Additional
metrics are the standard deviation s, and the root mean squared error (RMSE).
The optimal result is found when the standard deviation and the root mean
squared error are equal to zero and the coefficient of determination is equal to
one.

R2 = 1−
∑N
i=1(yi − ŷi)2∑N
i=1(yi − y)2 (2-12)

ε(%) = 100
N∑
i=1

| yi − ŷi |
| yi |

(2-13)

∆(%) = 100
(

1−
(
ε̂

ε

))
(2-14)

s =
√∑N

i=1(yi − y)2

N − 1 (2-15)

RMSE =
√∑N

i=1(ŷi − yi)2

N
(2-16)
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where yi is the measured data and ŷi is that predicted, ε̂ is the relative error
of the proposed new model, y is the mean of the measurements and N is the
number of samples or measurements.

There are two specific evaluation metrics to monitor the optimization
process performed by metaheuristic algorithms. The first one is the minimum
value of the cost function fmin(G) (2-17) in every generation G. Its choice is
justified since the aim of the iterative generated set of solutions is simply to
find better solutions and not generating an entire population of higher quality
solutions. The second is the mean population searching distance distmean(G)
(2-18), which can provide a direct measure of an EA convergence behavior. On
the search process, high values of distmean(G) mean high population diversity,
while a series of decreasing of its values occurs when the algorithm converges
[116].

fmin(G) = min{f(S)} (2-17)

distmean(G) = 2
m(m− 1)

m∑
k=1

m∑
l=k+1

dist(Sk(t), Sl(t)) (2-18)

where 2/m(m − 1) indicates the number of unique pairs that exist in a
population of size m and S is the set of all candidates in generation G.

2.1.6
Combination of Models

The idea of ensemble methodology is to build a predictive model by
combining multiple models. It has been considered by researchers from various
disciplines such as statistics and Artificial Intelligence (AI) since this approach
aims to improve prediction performance [117]. An ensemble approach is
composed of a set of combined models that act together to predict a response
variable [118]. Over the past two decades, this approach has received increasing
attention from the computational intelligence and machine learning community
because ensemble systems have proven to be highly effective and versatile in
many real-world problem domains and applications [98]. Figure 2.8 illustrates
a classification problem, its result is obtained from two base classifiers and a
single combiner. The combiner has the role of weighing the individual classifiers
and combining them to reach a final decision.
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Figure 2.8: Basic classification problem where a combination method uses two
classifiers to output the final classification. Adapted of [117].
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3
Optimization Algorithms

Optimization is a systematic procedure of seeking the best choices [119]
to accomplish either the least or the most extreme yield for any recognized
issue [120]. In engineering, it is the process of maximizing or minimizing a
desired objective function [121], which is the numerical measure of how good
the decisions chosen are [122].

Optimization is applicable to solve many engineering problems, some ap-
plications in engineering are (i) design of aircraft and aerospace structures for
minimum weight; (ii) design of pumps, turbines, and heat transfer equipment
for maximum efficiency, (iii) optimum design of electrical networks and (iv)
optimum design of control systems. This indicates how optimization is widely
used [123].

The classification of optimization can be carried out in terms of the
number of objectives, the number of constraints, function forms, the landscape
of the objective functions, type of design variables, uncertainty in values, and
computational effort. There are also different types of optimization problems
that are solved by different optimization techniques since some methods are
more suitable for certain types of optimization problems than others [124].
Figures 3.1 and 3.2 show, respectively, how optimization problems can be
classified as well as optimization algorithms.

3.1
Classical optimization

Classical optimization (CO), also known as mathematical programming,
comprises both analytical and numerical methods, which are useful in finding
the optimum solution of continuous and differentiable functions, i.e., classical
methods of optimization make use of the techniques of differential calculus in
locating the optimum points. Because of this, the scope of use of CO is limited
in practical applications since some of the practical problems involve objective
functions that are not continuous and/or differentiable [123,125]. This section
introduces some of the basic concepts of optimization.
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Figure 3.1: Classification of optimization problems. Adapted of [124].

3.1.1
Statement of an Optimization Application

Optimization is an iterative progression, a structured search through the
space formed by the decision variables from an initial trial solution toward the
optimum (commonly referred to as X∗) [119]. A general optimization problem
can be stated as follows:

Find X =



x1

x2
...
xn


which minimizes f (X) (3-1)

subject to the constrains:

gi(X) ≤ 0, i = 1, 2, ...,m (3-2)

lj(X) = 0, j = 1, 2, ..., p (3-3)

The optimization problem was stated being constituted by an objective
function f(X), by a n-dimensional design vector X (it contains n decision
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Figure 3.2: Classification of algorithms. Adapted of [124].

variables) and by gi(X) and lj(X), which are known as inequality and equality
constraints, respectively. The above-stated problem is called a constrained
optimization problem. However, some optimization problems do not involve
any constraints, in this case, they are called unconstrained optimization
problems.

3.1.2
The Notion of Local and Global Optima

Let us consider a single-variable optimization problem. A function of
one variable f(x) is said to have a relative or local minimum at x = x∗ if
f(x∗) ≤ f(x∗ + δ) for all sufficiently small positive and negative values of δ.
If f(x∗) ≥ f(x∗ + δ) for all values of δ sufficiently close to zero, a point x∗

is denoted as a relative or local maximum. A function f(x) is said to have a
global or absolute minimum at x∗ if f(x∗) ≤ f(x) for all x, and not just for
all x close to x∗, in the domain over which f(x) is defined. Similarly, a point
x∗ will be a global maximum of f(x) if f(x∗) ≥ f(x) for all x in the domain.
Figure 3.3 shows the difference between local and global optimum points for
a single-variable optimization problem, in this case, the value of x = x∗ is
to be found in the interval [a, b] such that x∗ minimizes or maximizes f(x).
An optimization problem can be written as a minimization problem or as a

DBD
PUC-Rio - Certificação Digital Nº 1821050/CA



3.1 - Classical optimization 43

maximization problem since min f(x) corresponds to max -f(x), this is shown
in Figure 3.4.

Figure 3.3: Relative and global minima and maxima of a single-variable
function. P1, P2, and P3 are relative maxima and P1 is the global maximum.
Similarly, V1 and V2 are relative minima and V1 is the global minimum.

There is a variety of possible classification of optimization problems. One
case is when there are no constraints involved, i.e., in Equations (3-2) and (3-3)
i=0 and j=0, respectively. Then, Equation (3-1) is reduced to Equation (3-4).

Find X =



x1

x2
...
xn


which minimizes f (X) (3-4)

Iterative algorithms have been developed for the solution of such prob-
lems. Beginning at a start point X0 the algorithm gradually converges towards
a local optimum by generating a sequence of iterations Xj, each new iteration
can be described by Equation (3-5):

Xj+1 = Xj + ηjdj (3-5)

where dj is the search direction at the point Xj, and ηj is the step length.
The search direction is chosen according to each algorithm and the

step length is typically adaptive, depending on X. We may cite Newton’s
method and Gradient Descent method, often referred to as Steepest Descent,
as options for the task of solving Equation (3-4). In the latter method, gradient
information is used to select a suitable search direction, more specifically, the
negative gradient at X0 is used since it gives the direction in which f(X)
decreases most [125]. Thus, the search direction can be written as:
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Figure 3.4: Maximization vs. Minimization. Minimization of f(x) is equivalent
to maximization of −f(x).

d0 = −∇f(X0) (3-6)

Equation (3-5) can be rewritten changing dj for d0, so that the iteration
now takes the form of:

Xj+1 = Xj − ηj∇f(X0) (3-7)

3.2
Metaheuristic Algorithms

This section briefly discusses metaheuristic algorithms, which are power-
ful and popular methods for solving complex engineering optimization prob-
lems [123]. Most metaheuristic algorithms are nature-inspired since they have
been developed based on some abstraction of nature. We focus on swarm in-
telligence, population-based algorithms, and those that rely on evolutionary
principles. They are often referred to as evolutionary algorithms (EAs), but
there are a variety of possible terms to refer to, such as evolutionary algorithms,
population-based algorithms, computer intelligence, and nature-inspired com-
puting [126]. Although there are many terminologies, these algorithms evolve
a population of promising solutions by using a mechanism that comprises two
operators: selection and variation [127].
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Figure 3.5 shows a general framework of an EA. The basic idea of EAs is
that a population of individuals is exposed to environmental pressure, by this
a natural selection process occurs, leading to the survival of the fittest [128],
which increases the population average aptitude to survive and reproduce
in a particular environment, i.e., its fitness [129]. The main evolutionary
mechanisms used by an evolutionary optimization problem are reproduction,
mutation, recombination, crossover, selection, and survival of the fittest. Each
individual of the population represents a candidate solution, and the cost or
objective function is analogous to the environment, deciding the fitness of each
individual of the population. The next few subsections briefly discuss some EAs
employed in this work.

Figure 3.5: General framework of Evolutionary Algorithms. The main mecha-
nisms used in this process are population selection, reproduction, recombina-
tion, crossover, and mutation.

3.2.1
Genetic Algorithm

Genetic algorithm (GA) [130] was one of the first evolutionary algorithms.
Nowadays GAs remain popular, having a variety of implementations, this
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is due to their performance on a range of problems and that they are also
easily implementable. GAs are optimization algorithms that use principles of
the mechanics of natural selection and natural genetics [108]. Features of an
individual are inherited by its offspring and they will be kept according to
their fitness in the environment. Adaptation plays also an important role in the
optimization process since individuals are progressively eliminated if they are
unable to adapt to the environment. Figure 3.6 shows a flowchart of a standard
GA, the first step is the initialization of the initial set of individuals. In GA,
individuals are represented as chromosomes, which consist of a set of genes,
and each gene is a decision variable. The solutions are evaluated according
to their fitness, which is the chromosome’s fitness to the environment. The
standard GA is composed of three operators, namely selection, crossover, and
mutation [131].

Figure 3.6: General framework of a GA.

In its simplest form, GA involves two operators: selection and single-point
crossover. A third operator was later introduced: mutation. First, a set of initial
candidates must be initialized. The next step is performed by first evaluating
the initial population to select the parents for the next generation. Parents
generate offspring through genetic recombination (crossover). A mutation
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process can occur in the new generation, it improves the search capabilities
of GAs. The fitness of the new population is finally evaluated, this process
endures until the termination criterion is achieved.

Selection is performed to choose individuals that will share their genetic
information to produce children for the next generation. We may cite some
selection methods, such as roulette-wheel (also called fitness proportional se-
lection), rank-based, and tournament selection [132]. The former method is the
most popular, in this approach a roulette wheel with slot areas corresponding
to the fitness of the individuals are created. This way, an individual i in the
population of N individuals will be selected for the crossover with a proba-
bility pi, which is calculated by Equation (3-8). The selection is performed by
randomly rotating the wheel to get a sector.

pi = fi∑N
j=1 fj

(3-8)

After selecting two parents, two children will be generated, each one
receiving some genetic information from one parent. The parents die and their
children give rise to a new generation to continue the evolutionary process.
Low-fitness individuals are more likely of dying in their generation, which
means they will be removed from the GA simulation. By this, high-fitness
individuals can survive to cross over and give rise to a new generation of
individuals. Crossover can be performed in a generation j as shown by Figure
3.7(a), which describes the single-point crossover. In this case, a position is
randomly selected and two parents share their genes to reproduce two children.
This process might be also executed as shown in Figure 3.7(b), which is
known as multi-point crossover; this is an extension of the former process. It is
important to mention that a uniform crossover process can be also executed,
in this case, each gene can be probabilistic choose for crossover.

The last step of the GA algorithm is a mutation, which is a random
change on one or more genes of some chromosomes, it is performed so that
the solution diversity can be increased. A mutation is important because it
helps the evolutionary process by adding some genetic information into the
population in case any is missing [126]. Algorithm 1 describes a standard GA
after a brief introduction to its three operators.
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Figure 3.7: Single and two-point crossover representation. The parents can be
selected by using methods such as roulette-wheel, rank-based, and tournament
selection. In this process, each individual shares some of his genetic information
with his offspring. The crossover point is chosen randomly and the parents mate
to generate individuals for the new generation.

Algorithm 1 Genetic Algorithm
1: Initialize a population of N Parents
2: while termination criterion is not satisfied do
3: Evaluate the fitness of each parent in the population
4: Empty Offspring
5: while |Offspring|< |Parents| do
6: Use fitness to probabilistic select two parents P1 and P2 from

Parents
7: With a probability of pc, conduct crossover on P1 and P2
8: Add P1 and P2 to Offspring
9: With a probability of pm, conduct mutation on P1 and P2

10: end while
11: Parents ← Offspring
12: end while
13: Next generation

3.2.2
Ant Colony Optimization

The first ant colony optimization algorithm (ACO) was the ant system
(AS) [133], it is a population-based optimization algorithm motivated by
the pheromone-deposition behavior of ants. The basic idea underlying this
algorithm is the positive feedback mechanism [134], which is based on the
trail-laying trail-following behavior of some species of ants [135]. When ants
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travel searching for a food source, they leave a trail of pheromone along the
path. If they are successful on their journey, they will deposit more pheromone
along the path. Other ants will smell the pheromone and bring more food to
the colony further enhancing the pheromone density on the path. If the ants
do not find a food source they will not deposit more pheromone when coming
back to the colony. Other ants will not follow this path since pheromone trails
evaporate with time, reducing their density indicating a path that will not
lead them to a food source. Figure 3.8 shows a simple experimental setting
that demonstrates how ants find the shortest path between their colonies and
the source of food.

Figure 3.8: How ants can find the shortest path between food sources and
their colony. Red dashed lines represent the pheromone deposition, and their
thickness is the density of deposition. (a) There is no pheromone in the
environment and the ants are not searching for food. (b) As ants go outside to
search for any source of food, they choose with a probability of 50% the short
or the long way and they deposit pheromone along the path. (c) One group of
ants have arrived first since they took the short path, and when returning its
members are more likely to choose the short path again. (d) The probability
of taking the short path increases since the pheromone trail on it is more
reinforced. As time goes, the colony will probably use the short path because
of the pheromone evaporation on the long path.

The first ACO algorithm was applied to solve different combinatorial op-
timization problems as the Traveling Salesman Problem (TSP), this procedure
is shown by Algorithm 2. The specific parameters of the ACO algorithm are
the evaporation rate (ρ), deposition constant (Q), initial pheromone between
cities (τ0), pheromone between cities (τij), and distance between cities (dij).
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Algorithm 2 ACO Algorithm
1: Place N ants on n cities
2: while termination criterion is not satisfied do
3: for k= 1 to N do
4: for i = 1 to n-1 do
5: Let i be the current city where ant k is placed
6: Let Cj be the group of adjacent cities of i
7: for each city j in Cj do

pij(k) = (τij)α/(dij)β∑
l∈Cj (τil)α /(dil)β

(3-9)

8: end for
9: end for

10: let ant k go to city j with probability pij(k)
11: end for
12: Lk ← Total path covered by ant k
13: for each city i do
14: for each city j do
15: for each ant k do
16: if ant k visited city j from city i then
17: ∆τij(k)← Q/Lk
18: else
19: ∆τij(k)← 0
20: end if
21: end for
22: τij ← (1− ρ)τij + ∆τij(k)
23: end for
24: end for
25: end while
26: Next generation

3.2.3
Biogeography-Based Optimization

Inspired by the study of the speciation, extinction, and geographical dis-
tribution of biological species, Simon [136] proposed a new metaheuristic algo-
rithm called biogeography-based optimization (BBO). BBO is a population-
based evolutionary algorithm in which each solution is analogous to an island
(habitat) with an immigration rate and an emigration rate. Islands are eval-
uated according to their conditions for species to live, if the conditions are
suitable these islands have a high habitat suitability index (HSI). Rainfall,
vegetative diversity, land area, and temperature are some of the variables as-
sociated with habitability, they are called suitability index variables (SIVs).
The island with a high HSI value has a low immigration rate because it tends
to support many species. On the other hand, the immigration rate is high for
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islands with low HSI values since they contain small populations [68].
Figure 3.9 represents a simple linear species migration model of an

island [137], although it might be more complicated in general. Immigration λ
and emigration µ rates are dependent on the number of species in the habitat.
When there are zero species on the island the maximal possible immigration
rate to the habit is I, which decreases with the increase of the number of
species, as the island becomes more crowded because fewer species can survive
immigration successfully. The immigration rate is zero as the maximal possible
number of species that the habitat can support (Smax) is achieved. Considering
now the emigration curve, the emigration rate is zero in the case there are no
species on the island. As the number of species increases the habitat becomes
more crowded so that more species leave the habitat, then the emigration
rate increases achieving its maximum value E. S0 is known as the equilibrium
number of species and M0 is its correspondent rate of equilibrium, i.e., the
intersection point of λ and µ.

Figure 3.9: Simple linear species migration model of an island. The maximal
possible immigration and emigration rates are, respectively, I and E. S0 is the
equilibrium species count andM0 is its correspondent rate of equilibrium (µ =
λ). A linear migration curve is assumed for convenience but in biogeography
migration curves assume a nonlinear behavior. Another representation possible
could be an S-shaped curve for migration rate.

In a BBO problem, a candidate from the set of solutions is considered
as a habitat, its HSI is analog to the fitness value in other population-based
optimization algorithms and each candidate component is an SIV. Immigration
and emigration rates are used to perform migration in each generation so that
the population can continually evolve [126]. Mutation can be also introduced
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as an operator in the optimization problem. Pm is the mutation probability and
lb and ub are, respectively, the lower and upper search bounds of the ith SIV.
Based on the migration and mutation operators, a framework of the basic BBO
can be given by Algorithm 3, which is known as partial immigration-based
BBO [138], since it is probabilistic to decide whether to replace a solution
feature.

Algorithm 3 The basic framework of the BBO algorithm
1: Initialize a set of N candidate solutions called habitats: X
2: while termination criterion is not satisfied do
3: for each habitat xk, k ∈ [1, N], xk ∈ X do
4: set emigration rate µk proportional to HSI: µk ∈ [0,1]
5: set immigration rate as λk = 1− µk
6: end for
7: Set a temporary population of habitats: Z ← X
8: if rand(0,1) < λk then
9: for each habitat xk, k ∈ [1, N], xk ∈ X do

10: for each SIV do
11: perform migration on xk using µj to probabilistic select the

emigrating habitat xj:
12: xk(SIV) ← xj (SIV)
13: end for
14: end for
15: end if
16: for each SIV in habitat xi do
17: if rand(0, 1) < Pm then
18: xi(SIV)← rand(lb, ub)
19: end if
20: end for
21: X ← Z
22: end while
23: Next generation

3.2.4
Differential Evolution

Differential Evolution (DE) [139] is not a biologically-motivated, but
a population-based algorithm [140], which searches for a global optimum
point in an n-dimensional continuous domain [141]. Each solution xi is an
n-dimensional vector, it is represented by (3-10), which can be considered as
the chromosomes of a GA [142].

xi = {x1,i, x2,i, ..., xn,i} (3-10)
DE uses a scaled version of the difference between two distinct individuals

and adds it to a third individual to obtain a new candidate solution. This
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process can be resumed in three stages: mutation, crossover, and selection.
Figure 3.10 describes some steps of the basic idea behind differential evolution
in a two-dimensional search space.

Figure 3.10: The basic idea of differential evolution mutation scheme for a two-
dimensional search space. Three distinct randomly chosen vectors (xr1, xr2,
and xr3) are used to create a mutant vector vi.

First, two distinct individuals xr2 and xr3 are randomly chosen to obtain
a mutant vector vi, which is built by adding to xr1 a scaled version of the
difference between xr2 and xr3. A crossover process is performed so that a
trial vector ui is generated, the process is finally finished by selecting the fittest
individual among xi and ui. Algorithm 4 summarizes the basic DE algorithm
for an n-dimensional problem.

Algorithm 4 DE Algorithm
1: Set the step size parameter (F)
2: Set the crossover rate (c)
3: Initialize a population of N candidate solutions: X
4: while termination criterion is not satisfied do
5: for eachxi ∈ X do
6: randomly chose three distinct individuals xr1, xr2 and xr3 from X:

xi /∈ {xr1,xr2,xr3}
7: generate a mutant vector:
8: vi ← xr1 + F ∗ (xr2 − xr3)
9: Perform crossover:

10: Jr ← rand(1,n)
11: for each dimension j ∈ [1, n] do
12: rcj ← rand(0,1)
13: if rcj < c or j = Jr then
14: uij ← vij;
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15: else
16: uij ← xij;
17: end if
18: end for
19: end for
20: for each population index i ∈ [1, N ] do
21: select the fitter one:
22: if f(ui) < f(xi) then
23: xi ← ui
24: end if
25: end for
26: end while
27: Next generation

3.2.5
Particle Swarm Optimization

Particle Swarm Optimization (PSO) [143] was inspired by the social
behavior of bird flocks, it belongs to the group denominated as Swarm
Intelligence algorithms, which are inspired by the collective behavior of social
insects as well as from other animal societies for the design of intelligent multi-
agent systems [144, 145]. Candidate solutions are analogous to particles of a
swarm, they move through the problem search space with some velocity vi

searching for an optimal solution. PSO was first designed for n-dimensional
minimization problems defined over a continuous domain. Although PSO is a
population-based algorithm it does not make use of crossover and mutation,
instead of that the position and velocity of each individual are adjusted in
every generation [68], which means that PSO can model the dynamics of the
movement of the particles through the search space [126]. The position xi of
each particle is adjusted generation by generation according to its velocity
and taking into account its own best position so far as well as from its
neighbors [144]. It means that the social interaction between the particles is
used to perform the position adjustment of the particles since the experience
of the neighboring particles in the search space influences their movement. The
velocity and position of each particle component can be modeled, respectively,
by Equations (3-11) and (3-12).

vt+1
ij = wvtij + φ1(btij − xtij) + φ2(htij − xtij) (3-11)

xt+1
ij = xtij + vt+1

ij (3-12)
where w is a scalar parameter called inertia weight. It can be a fixed value
w ∈(0,1) or adjustable over the interactions. If tmax is the maximum number
of interactions, wmin and wmax are defined as the minimum and maximum
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values of w, the inertia weight term can be modeled as in Equation (3-13).
φ1 and φ2 are learning rates or acceleration constants. The difference terms
(btij − xtij) and (htij − xtij) are the cognitive and social terms, respectively. It is
important to keep in mind that an arbitrary growth of the velocity shall be
avoided [132]. Finally, the pseudocode for PSO is presented by Algorithm 5.

w = wmax −
t

tmax
(wmax − wmin) (3-13)

Algorithm 5 PSO Algorithm
1: Initialize a swarm X of N particles
2: Initialize the velocity vector vi of each particle
3: Initialize the best position of each individual bi
4: Define the neighborhood size
5: Set the maximum learning rates φ1,max and φ2,max
6: Define the maximum velocity vmax
7: Define the lower and upper borders of the inertia weight w: wmin, wmax
8: while termination criterion is not satisfied do
9: for each individual xi of the swarm do

10: Set Hi as the set of the P nearest neighbors of xi
11: From Hi select the fittest neighbor hi of xi
12: hi ← arg minx{f(x) : x ∈ Hi}
13: Generate the learning rate φ1 for each dimension j of xi: φ1 [0,φ1,max]
14: Generate the learning rate φ2 for each dimension j of xi: φ2 [0,φ2,max]
15: Update the velocity of xi according to Equation (3-11)
16: if |vi|> vmax then
17: vi ← vivmax/ | vi |
18: end if
19: Update the position of xi according to Equation (3-12)
20: bi← arg min{f(xi), f(bi)}
21: end for
22: Update the inertia weight w according to Equation (3-13)
23: end while
24: Next generation

3.3
Surrogate Models Used for Optimization

Surrogate models, also known as metamodels or reduced-order models,
are an approximation of the input-output that seek to understand input
and output relationships that are either unknown or complex via reasonably
accurate simpler functions [146,147].
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3.3.1
Bayesian Optimization Using Gaussian Process

Bayes’ theorem plays a central role in statistical analysis, it describes the
probability of an event based on prior knowledge of the conditions that might
be related to the event [92, 148]. Suppose that y = (y1, ..., yn) is a vector of n
observations with a probability distribution p(y | θ) depending on the values
of k parameters θ = (θ1, ..., θk). θ also has p(θ) probability distribution [149].
The conditional distribution of θ, given the observed data y, is expressed as
follows:

p(θ | y) = p(y | θ)p(θ)
p(y) (3-14)

where p(θ) is called the prior distribution of θ, which tells what is known about
θ without knowledge of the data. p(θ | y) is called the posterior distribution
of θ given y, which tell us what is known about θ given the knowledge of the
data.

Bayesian Optimization (BO) was first introduced by [150] and then by
[151] and [152]. It is composed of two main components: a Bayesian statistical
model for modeling the objective function and an acquisition function for
deciding where to sample next. BO usually models the objective function
by a Gaussian process (GP), and iteratively samples the next data point by
maximizing an acquisition function. BO is a popular approach for expensive
black-box optimization problems, some applications are parameter tuning,
experimental design, and robotics [153, 154]. A simple framework of a BO
problem using Gaussian Process with N function evaluations is shown by
Algorithm 6.

An objective function f(xn) is sequentially optimized with assumptions
on a prior distribution, which is a probabilistic model, over f(xn). In each
iteration a point x is chosen by maximizing an acquisition function (acq(·)),
the objective value f(xn) is evaluated, and the prior distribution is updated
with the new data point.

The task of an acquisition function is to measure the value that would
be generated by the evaluation of the objective function at a new point
x, based on the current posterior distribution over f(xn). Some examples
of acquisition functions are the probability of improvement (PI) [150], the
expected improvement (EI) [155], and the upper confidence bound (UCB)
[156].
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Algorithm 6 Basic pseudo-code of a Bayesian optimization problem
1: Place a Gaussian process on f
2: Observe f at n0 points according to an initial space-filling experimental

design.
3: Set n = n0.
4: while n ≤ N do
5: Update the posterior probability distribution on f using all available

data
6: Let xn+1 be a maximizer of the acquisition function over x, where the

acquisition function is computed using the current posterior distribution.
xn+1 = arg maxx∈X acq(x) (3-15)

7: Evaluate f at xn+1 to obtain yn+1
8: Increment n
9: end while

10: Return a solution: either the point evaluated with the largest f(xn), or the
point with the largest posterior mean.

3.3.2
Sequential Optimization Using Decision Trees

In sequential optimization using decision trees (DT) a tree-based regres-
sion model is used to sequentially evaluate the expensive function at the next
point. Thereby finding the minimum of the function with as few evaluations
as possible.

In supervised learning problems, one tries to use a set of inputs, or inde-
pendent variables, to predict an output or dependent variable. In classification
problems, the output is a categorical variable, on the other hand, if the output
is a continuous variable this case is referred to as a regression problem. Tree-
based models have a set of useful tools for supervised learning tasks. They
approach these problems by recursively partitioning a learning sample over its
input variable space and fitting a simple function to each resulting subgroup
of cases [157]. Recursive partitioning (RP) is a non-parametric technique for
prediction and classification. RP provides in its standard way, trees that dis-
play the succession of rules that need to be followed to derive a predicted value
or class [158].

RP is the key to the non-parametric statistical method of classification
and regression trees (CART) [159]. A decision tree is constructed by either
splitting or not splitting each node on the tree into two daughter nodes, it is
done step-by-step by a recursive partitioning process [160]. Basic regression
trees partition the data into smaller groups that are more homogeneous
concerning the response. Outcome homogeneity is achieved in regression trees
by determining [161]:
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(i) The predictor to split on and value of the split;

(ii) The depth or complexity of the tree;

(iii) The prediction equation in the terminal nodes.

For regression problems, the model begins with the entire data set, S,
and searches every distinct value of every predictor to find the predictor and
split value that partitions the data into two groups (S1 and S2). This process is
done in such a way that the overall sum of squared errors (SSE) is minimized:

SSE =
∑
i∈S1

(yi − ȳ1)2 +
∑
i∈S2

(yi − ȳ2)2 (3-16)

where ȳ1 and ȳ2 are the averages of the training set outcomes within groups
S1 and S2, respectively.

Suppose we have a simple example of a recursive partitioning involving
two input variables, X1 and X2. Suppose the tree diagram is given in the left
panel of Figure 3.11.

Figure 3.11: Example of recursive partitioning with two input variables X1
and X2. The left panel shows a decision tree with five terminal nodes, τ1-τ5,
and four splits. The right panel shows the partitioning of two into five regions,
R1-R5, corresponding to the five terminal nodes.

The possible stages of this tree are as follows: (I) Is X2 ≤ θ1? If yes,
follow the left branch; if no, follow the right branch. For a positive answer to
(I) we ask the next question: Is X2 ≤ θ3? An answer of no yields terminal node
τ5 with corresponding region R5 = {θ1 ≤ X2 < θ3}; For a positive answer to
(II) we ask the next question (III): Is X1 ≤ θ4? An answer of no yields terminal
node τ4 with corresponding region R4 = {X2 ≤ θ3, X1 > θ4}; otherwise, the
corresponding region is R3 = {X2 ≤ θ3, X1 ≤ θ4}. A negative answer to (I)
leads to questions IV: Is X1 ≤ θ2? An answer of yes results in terminal node τ1
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with corresponding region R1 = {X2 > θ1, X1 ≤ θ2}; An answer of no yields
terminal node τ2 with corresponding region R2 = {X2 > θ1, X1 > θ2}. For this
example, θ4 > θ2 and θ1 > θ3.
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4
Friction Models

Studies concerning friction have been carried out over the centuries. Da
Vinci, Amontons [162], and Coulomb [163] have made the first contributions on
this topic, the latter, however, has brought the most significant advances in this
area developing the first mathematical friction model [164,165]. In Coulomb’s
friction model a constant friction component is assumed, it is independent of
the magnitude of the velocity, however, at zero velocity the friction force is a
multi-valued function (4-1).

F =
 FCsign(v) if ‖v‖ 6= 0
min(‖Fe‖ ,FC)sign(Fe) if ‖v‖ = 0

(4-1)

Fe represents the resultant of the external forces acting on the reference
body in the tangential direction of the contact, v is the relative tangential
velocity of the body concerning the other contacting surface. FC denotes
the magnitude of Coulomb’s friction (4-2); µ and FN are, respectively, the
coefficient of friction and the normal force of contact.

FC = µ ‖FN‖ (4-2)
One of the most common modifications of Coulomb’s friction law is the

introduction of a viscous friction component Fv proportional to the velocity
(4-3) corresponding to a well-lubricated situation. This combination is also the
most often employed model as well [165,166], it is given by Equation (4-4).

F = Fvv (4-3)

Fs
C =

 FCsign(v) + Fvv if ‖v‖ 6= 0
min(‖Fe‖ ,FC)sign(Fe) if ‖v‖ = 0

(4-4)

Equation (4-4) is the symmetric version of Coulomb’s friction law with
viscous friction, but in practice, friction may be asymmetric. It can be handled
by using different values of the parameters for positive and negative values of
the velocity [167]. This assumption leads us to rewrite equation (4-4) in its
asymmetric version (4-5), here we call it Fa

C.
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Fa
C =

F
+
C sign(0+ (v)) + F+

v 0+(v) + F+
C sign(0− (v)) + F+

v 0−(v) if ‖v‖ 6= 0
min(‖Fe‖ , F+

C sign(0+ (v)), F−C sign(0− (v)))sign(Fe) if ‖v‖ = 0
(4-5)

F+
C , F−C , F+

V , F−V represent, respectively, the magnitude of Coulomb’s
friction and the viscous friction coefficient for positive and negative velocities.
Two mathematical operators denoted as 0+ (v) and 0− (v), as given by Equa-
tion (4-6) and (4-7) respectively, are used to compute different values of the
parameters for positive and negative values of the velocity. 0+ (v) returns v if
v > 0 and 0 otherwise and 0− (v) returns -v if v < 0 and 0 otherwise.

0+ (v) = v (1 + sign (v)) /2 (4-6)

0− (v) = v (1− sign (v)) /2 (4-7)
As shown by Figure 4.1, Coulomb’s friction model has a discontinuity at

zero velocity (blue line). To soften its discontinuity the model of Equation (4-8)
was proposed by [168], its representation is shown by Figure 4.1 (orange line).
In this present work, however, we will include the viscous friction component
in Equation (4-8) and take into account the modification proposed by [165]
since it has a higher resemblance with Coulomb friction law. Equation (4-9)
shows the proposed model.

Figure 4.1: Comparison between the model proposed by [168] for a 1D case
and Coulomb’s friction model. The former model softens the discontinuity of
the latter model for velocities close to zero through an exponential term.

F =

FC
(

1− e
3‖v‖
v0

)
sign(v) if ‖v‖ ≤ v0

0.95FCsign(v) if ‖v‖ > v0

(4-8)

where v0 is a tolerance velocity.
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Fs
F =


FV v + FC

(
1−e

3‖v‖
v0

1−e3

)
sign(v) if ‖v‖ ≤ v0

FV v + FCsign(v) if ‖v‖ > v0

(4-9)

Due to its importance and complexity, further friction models have been
formulated. A model also including an exponential decaying term in the friction
was proposed by Tustin [169], which is well suitable to describe friction force
at a velocity close to zero [170]. This model is given by Equation (4-10).

F = FS − FSK(1− e−
v
vc ) + Fvv (4-10)

where FS is the static friction coefficient; FSK is the difference between static
friction and kinetic friction; and vc is a characteristic velocity at which the
system transits to kinetic friction.

It is common to find Equation (4-10) rewritten as (4-11) [170–172], in
this case vs can be the Stribeck velocity. Modified versions of this model were
also proposed by [173] and [174].

Fs
T = FCsign(v) + (FS − FC)e−

v
vs + Fvv (4-11)

Another exponential model that considers Coulomb’s model with viscous
friction, stiction, and the Stribeck effect, which manifests as a nonlinear
dependence of friction on sliding speed, was introduced by [175]. This model
is given by Equation (4-12).

Fs
V = Fvv +

(
FC + (FS − FC)e−( ‖v‖vs )δσ

)
sign(v) (4-12)

where δσ is a factor that relies on the geometry of the contacting surfaces.
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5
Case Studies - EMPS and TX40 Robot

In the next sections, the two case studies covered in this work will be
presented.

5.1
First Case Study: EMPS

Nowadays most of the positioning and motion control systems are in-
volved in processes of manufacturing, transferring, or testing. Positioning sys-
tems can range from pre-engineered linear servo motor tables to rotary tables
designed for motor-driven indexing. Figure 5.1 shows an Electro-Mechanical
Positioning System (EMPS), which is a standard configuration of a drive sys-
tem for prismatic joint, it is based on a linear shaft driven by a rotational
electromagnetic motor via ballscrew. This is the first case study, which is de-
scribed in [176]. The benchmark is challenging because of the unknown friction
behavior and the marginally stable system dynamics. Figure 5.2 shows the joint
force, position, velocity, and acceleration.

Figure 5.1: Electro-Mechanical Positioning System (EMPS). The image shows
some of the components of the EMPS. For more details see [176].

In the benchmark, the motor force (F) is the system input and the
measured output is the prismatic joint position (qm). The joint velocities and
accelerations were calculated from qm, which is firstly filtered and then the
derivatives (q̇,q̈) are calculated with finite differences. The estimation and
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validation datasets were constructed from closed-loop experiments performed
with the same reference position trajectory. The two datasets are acquired
during approximately 25 seconds and are collected at a sampling frequency of
1 kHz. A force disturbance is acting on the system to generate the validation
dataset.

Figure 5.2: Estimation and validation dataset provided for the identification
task of the dynamic parameters of the EMPS. For more details see [176].

5.1.1
Problem Formulation

The system identification problem is addressed as a minimization prob-
lem with cost function defined as the squared error between the measured data
(yi) and that predicted by the model (ŷi):

minf(X) =
N∑
i=1

(yi − ŷi)2 (5-1)

Equation (5-1) can be written in more detail by (5-2). Γ is the (N × 1)
vector of measurements that expresses the joint force, and F̂Fric denotes the
(N × 1) vector of estimated friction force, M̂ is the estimated mass and q̈ is
the acceleration vector.

minf(X) =
∑[

Γ− (M̂ q̈ + F̂Fric)
]2

(5-2)
The second term of Equation (5-2) is known as the inverse dynamic

model (IDM), which provides, in this case, the joint force in terms of the joint
velocities and accelerations (5-3). This model is used to identify the dynamic
parameters that are necessary for both control and simulation applications
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[166]. We have, therefore, a cost function for each friction model, i. e., we
model the frictional effect using the friction models of Chapter 4. Like (4-4),
models Fs

F, Fs
T and Fs

V will also be evaluated in their asymmetric versions.
They will be named as Fa

F, Fa
T and Fa

V, respectively.

τidm = IDM(q, q̇, q̈) (5-3)
Some recent works have also addressed the EMPS as one of their case

studies [177,178]. The authors used several approaches to simulate the position
of the prismatic joint. In their work, the authors reached an R2 higher than
0.99, a RMSE of 2.64× 10−3 and a fit of 96.8%. These evaluation metrics were
not the same as those used in studies in which the position of the prismatic
joint was simulated (Chapter 6: Sections 6.2 and 6.3).

5.2
Second Case Study: TX40 Robot

The Stäubli TX40 6-axis robot is an articulated arm with 6 axes with
spherical work envelope. It can be mounted on the floor, wall, or ceiling. The
TX40 6-axis robot has a maximum payload of 2.3 kg and a 515 mm reach. It
is used mainly in electronics and pharmaceutical companies, where precision
and very low cycle times are a priority.

The TX40 robot is one of the case studies of [179]. The author kindly
provided some data for a preliminary study presented in Chapter 6, Section
6.4, for the identification of the dynamic parameters of the TX40 robot. In the
preliminary study, the data were used only to identify the dynamic parameters
of the case study since another database has not yet been provided for the
validation of the model. Figure 5.3 shows the torque, position, velocity, and
acceleration of the second joint.

The measurements of the position of the joint and the vector of the con-
trol signal, calculated according to the control law, are generally the available
signals from the robot controller. The IDM method (Equation 5-3) uses a fil-
tered position obtained by filtering measurements of the position through a
low-pass Butterworth filter in both the forward and reverse directions using
the filtfilt MATLAB® function. The derivatives (q̇,q̈) are calculated offline
without phase shift, using a central difference algorithm of the lowpass filtered
position.

5.2.1
Problem Formulation

Here the formulation follows the same principle of Subsection 5.1.1:
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Figure 5.3: Data provided for the identification task of the TX40 robot.

minf(X) =
∑

[τ − τidm]2 (5-4)
The IDM of the Stäubli TX40 robot is given by Equation 5-5:

τidm = ZZq̈ + τGrav(q) + τFric(q̇) + offset (5-5)
where τ is the (N × 1) vector of measurements that expresses the second joint
torque; τGrav is the gravity torque of the second link; τFric is the friction torque;
ZZ is the total inertia of the second link and offset is an offset parameter.

The gravity torque of the second link is expressed by:

τGrav = −gMXcos(q) + gMY sin(q) (5-6)
where g is the gravity constant; MX and MY are the components of the
gravity effect and q is the position of the second link.
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6
Parameter Identification of Robotic Manipulators

This chapter is dedicated to the presentation of the contributions of this
dissertation. The first case study is covered in the first three sections, while
the last section covers the second case study.

6.1
Comparison of Friction Models for Grey-box Identification of an Elec-
tromechanical Positioning System

This section covers the contributions presented at the Brazilian Sympo-
sium on Intelligent Automation that took place in Ouro Preto in 2019.

6.1.1
Contributions

The contributions of this section are:

(i) Identification of the dynamic parameters of a positioning system;

(ii) Comparison of four friction models in their asymmetric and symmetric
versions.

6.1.2
Methods

The data for the identification of the EMPS parameters were made
available by [176]. It includes the joint position and the control signal resulting
from the control law. First, a lowpass filter is applied to remove any torque
ripples because the motor torque τ presents high-frequency disturbances.
Besides, a decimation procedure is performed since there is no information
on high frequencies because the data is lowpass filtered.

The second term of Equation (5-2), known as the inverse dynamic model
(IDM), is rewritten here by Equation (6-1), according to [176,179]:

τidm = M q̈ + Ff (q̇) + offset (6-1)
where τidm is the joint torque/force; M is the mass; Ff is the friction
model, which is one of those discussed in Chapter 4; offset is an offset of
measurements; q̇ and q̈ are, respectively, the velocity and acceleration vectors.
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Equations (4-4) and (4-5) are linear in relation to the parameters of the
model, for this case a QR factorization was used to solve the linear Least-
Squares problem. The Levenberg–Marquardt algorithm [180,181] was applied
to estimate the free parameters of the other friction models, which are given in
Table 6.1. This approach has been validated on several industrial robots and
prototypes [182–184].

Table 6.1: Models and their parameters.
Friction Model Free parameters
F sF M, FV , FC , of
FaF M, F+

V , F+
C , F−V , F−C

F sC M, FV , FC , of
FaC M, F+

V , F+
C , F−V , F−C

F sT M, FV , FK , FS , k, of
FaT M, F+

V , F+
K , F+

S , F−V , F−K , F−S , k+, k−
F sV M, FV , FC , FS , of
FaV M, F+

V , F+
C , F+

S , F−V , F−C , F−S

For this contribution the Fs
T friction model formulated by [173] was

adopted, see Equation (6-2). Since some of the specific parameters are ex-
tensively used as specified in the literature [165,185,186], they will be not esti-
mated in the optimization process, they are: Stribeck velocity vS = 0.001m/s,
Geometry factor δσ = 2 and Tolerance velocity (Threlfall) v0 = 0.001m/s.
Though they must not necessarily be fixed since one could try to find the δσ
for a specific study case.

Fs
T = FV q̇ +

[
FK + (FS − FK) e

|q̇|
k

]
sign(q̇) (6-2)

6.1.3
Results

In the present section, the results concerning the grey-box approach for
the identification of the dynamic parameters of the EMPS using a local search
method are presented, as well as the comparison of four friction models in their
asymmetric and symmetric versions.

The software MATLAB® and the function lsqnonlin were chosen for the
optimization process.Table 6.2 shows the estimated dynamic parameters of all
models. It can be noticed that there is no significant difference in the estimated
values of some parameters of the asymmetric models, such as F+

C and F−C , F+
S

and F−S . However, F+
V and F−V , F+

K and F−K are significantly different from
each other, which indicates an asymmetric behavior of the friction. The error
of the models with the highest and lowest accuracy are available in Figure 6.1.
It shows that F a

T model has a much lower error amplitude compared to the F s
F

model.
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Table 6.2: Estimated parameters of the symmetric and asymmetric models.
Parameters Fs

C Fs
V Fs

T Fs
F Fa

C Fa
V Fa

T Fa
F

M (kg) 95.1089 95.108 95.109 95.121 95.1540 95.152 95.149 95.302
FV (N/ms−1) 203.5034 203.38 203.54 206.22 - - - -
FC (N) 20.3935 20.406 - 9.8066 - - - -
FS (N) - 19.945 20.393 - - - - -
FK (N) - - 2222.6 - - - - -
k (rad/s) - - -62187 - - - - -
Of (N) -3.1648 -3.1648 -3.165 -3.1621 - - - -
F+
V (N/ms−1) - - - - 166.7061 166.04 245.14 168.95
F−V (N/ms−1) - - - - 240.4236 240.17 240.51 243.03
F+
C (N) - - - - 20.1440 20.209 - 9.7088
F−C (N) - - - - 20.6277 20.653 - 9.9268
F+
S (N) - - - - - 17.882 18.903 -
F−S (N) - - - - - 19.691 20.624 -
F+
K (N) - - - - - - 22.572 -
F−K (N) - - - - - - -6277.3 -
k+ (rad/s) - - - - - - -0.100 -
k− (rad/s) - - - - - - 1.344e+05 -

Figure 6.1: Error comparison between the best and worst friction model when
the force is predicted by an OSA procedure. F a

T model has the lowest error
and F s

F the highest.

Figure 6.2 illustrates the behavior of the simulation error of the force of
the joint when all friction models are considered. The behavior of the error is,
in general, the same for all models, the difference lies, basically, in the error
amplitude of each one. A direct comparison between the reconstructed and
measured force of the best model performed by an OSA procedure is show
by Figure 6.3(a). There is a reasonable resemblance between reconstructed

DBD
PUC-Rio - Certificação Digital Nº 1821050/CA



6.1 - Comparison of Friction Models for Grey-box Identification of an
Electromechanical Positioning System 70

and measured forces. The relation between measured and estimated forces are
shown in Figure 6.3(b), it clearly shows that the estimated parameters of the
F a
T model can describe the dynamic behavior of the EMPS adequately.

Figure 6.2: Error comparison of all models. The error between the predicted
and measured forces has a similar behavior when all friction models are
compared, they differ from each other on the amplitude.

Table 6.1.3 shows the results of all evaluation metrics described in
Equations (2-13) to (2-16). In this table, the improvement described in
percentage was based on the relative error, where each model is compared
with the one that has the highest relative error. In Table 6.1.3 we can see that
the model with the best metrics is the F a

T model, as its R2 approaches unity
and the standard deviation is relatively small. F a

T is the best model, which
presents an improvement of 99% in terms of the relative error compared to
F s
F model. This shows the importance of adopting more accurate models in

grey-box system identification.
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Figure 6.3: (a) Direct comparison of the measured and estimated data of the
best model. There is a reasonable resemblance between reconstructed and
measured forces when the best friction model is selected for the prediction;
(b) Measured force and estimated force of the F a

T model. It clearly shows that
the estimated parameters of the F a

T model can describe the dynamic behavior
of the EMPS adequately. This can be seen also by the evaluation metrics.

Table 6.3: Evaluation of the proposed models.

Model R2 δ(N) ε (%) s (N) ∆(%)
F sF 0.996 3.2249 6.0299 3.2256 -
FaF 0.997 2.8658 5.3584 2.8664 11.14
F sC 0.998 2.1839 4.0834 2.1843 32.30
F sT 0.998 2.1839 4.0834 2.1843 32.30
F sV 0.998 2.1837 4.0831 2.1842 32.30
FaC 0.999 1.6642 3.1117 1.6646 48.40
FaV 0.999 1.6611 3.1058 1.6614 94.15
FaT 0.999 1.6194 3.0276 1.6194 99.16

6.2
Ensemble Grey and Black-box Nonlinear System Identification of a Posi-
tioning System

This section covers the contributions presented at the Brazilian Congress
of Automation in 2020, a virtual event due to the restrictions imposed on events
due to the COVID-19 pandemic.

6.2.1
Contributions

The contributions of this section are:

(i) Identification of the dynamic parameters of a positioning system;

(ii) Development of a hybrid model, consisting of grey and black-box models,
used to simulate the output variable of a positioning system;
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(iii) Combination of models of different classes to simulate the output variable
of a positioning system;

(iv) Comparison of four friction models in their asymmetric and symmetric
versions.

6.2.2
Methods

Figure 6.4 shows a schematic of the three approaches used for the
simulation of the load’s position, namely: (i) grey-box model (GBM); (ii)
black-grey-box model (BGBM); (iii) ensemble grey-black-box (EGBB). First,
the parameters of a grey-box model are estimated and used for simulating
the position of the load of the EMPS (ŷ1). Next, The error e1 between
the true position y of the load and ŷ1 is modeled by a black-box approach
using a NARX ANN model. By summing the modeled error (ê1) and the
estimated position ŷ1, the second estimated position (ŷ2) is generated. Finally,
an ensemble (EGBB) is built by the combination of both GBM and BGBM
models. It is given a weight to every single model so that a more accurate
estimation of the load’s position can be achieved. Next, each of these three
approaches are depict separately.

Figure 6.4: Formulation of the three approaches. GBM is the first approach, it
generates ŷ1. The error of the GBM approach (e1) is modeled to generate the
estimated position of the second approach (BGBM), which is a combination
of a grey and black-box models. Finally, an ensemble of ŷ1 and ŷ2 is built by
using a simple linear regression.
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The parameters of the GBM approach were estimated according to the
methodology of Subsection 6.1.2, but here the Fs

T friction model formulated
by [174] was adopted and in the optimization process vS, δσ, and v0 were also
estimated. All necessary parameters for the simulation of the position of the
joint of the EMPS can be found in Tables 6.4 and 6.5.

Table 6.4: Parameters of the asymmetric friction models estimated by the
optimization process.

Parameter Fa
C Fa

F Fa
T Fa

V
M (kg) 95.1540 95.154 95.547 95.153
F+
V (N/ms−1) 166.7061 166.71 178.48 166.1
F−V (N/ms−1) 240.4236 240.42 218.67 240.19
F+
C (N) 20.1440 20.144 25.014 20.204
F−C (N) 20.6277 20.628 28.028 20.651
F+
S (N) - - 25.014 18.708
F−S (N) - - 21.578 20.058
δσ - - - 1.8258
v0 (m/s) - 0.0032239 - -
vS (m/s) - - 0.004156 0.00063898

Table 6.5: Parameters of the symmetric friction models estimated by the
optimization process.

Parameter Fs
C Fs

F Fs
T Fs

V
M (kg) 95.109 95.109 95.681 95.105
FV (N/ms−1) 203.503 203.5 203.36 200.85
FC(N) 20.393 20.393 17.023 20.639
FS(N) - - 17.023 18.968
FK(N) - - - -
Of(N) -3.165 -3.165 -4.123 -3.146
δσ - - - 1.236
v0 (m/s) - 5.413E-3 - -
vS (m/s) - - 6.464E-3 5.483E-3

Since the true output of the EMPS can be described by ŷ1 and e1, as
shown by Figure 6.4, the aim of the first part of BGBM approach is to model
e1 using a NARX model (6-3), and sum the modeled error with ŷ1 to obtain a
more accurate response than that found by the first approach. The input (u)
and output (y) considered are, respectively, the force and the error e1.

y(k) = F [y(k − 1), y(k − 2), ..., y(k − ny),
u(k − d), u(k − d− 1), ..., u(k − d− nu)]

(6-3)

where y(k), u(k) are the system output and input, respectively; ny and nu are,
respectively, the maximum lags for the system output and input; F is some
nonlinear function, and d is a time delay.

The model, based on the linear ARX model [114], is essentially an
expansion of past inputs and outputs, but the nonlinear ARX model uses
a nonlinear mapping function F between the input and output data. Here
we use a NARX neural network structure, described in Section 2.1, for the
formulation of the model.

DBD
PUC-Rio - Certificação Digital Nº 1821050/CA



6.2 - Ensemble Grey and Black-box Nonlinear System Identification of a
Positioning System 74

Finally, the strategy adopted for the last approach is a linear regression,
we may find the relationship between the true output of the EMPS and the
two approaches ŷ1 and ŷ2 (predictors). A weight is attributed to each different
solution so that the approximation given by ŷ3 can be better than ŷ1 and ŷ2

individually. The input arguments for the linear regression are ŷ1 and ŷ2 as
predictors and y as the response variable.

6.2.3
Results

In this section, the results concerning the application of grey and black-
box models as well as their combination for the simulation of the position of
the joint of the EMPS are provided. The whole system was simulated in the
software MATLAB® according to Figure 6.5, ode45 was used as the solver
for the differential equation to simulate the position of the joint with the
parameters estimated in the optimization process. The software MATLAB®

was used to define the parameters of the black-box model, which are its orders
na, nb and the number of neurons M of the wavelet network nonlinearity
estimator that is used for the mapping of the nonlinearity of the model. The
values of na and nb ranged from 2 to 15 and the number of neurons from 10
to 30.

Figure 6.5: The positioning system was modeled and simulated on Simulink®.
Figure 6.5(a) shows the whole system, while the blue dashed block is detailed
by Figure 6.5(b), which represents the Fs

V friction model.

Figure 6.6 shows the comparison between the measured and estimated
position using the BGBM approach (ŷ2). Fa

C and Fs
T are the friction models

(ŷ2F
a
C , ŷ2F

s
T ), which are considered as the best models of this approach since
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they achieved higher relative error improvement. The estimated position is al-
most perfectly modeled by both models, showing their reasonable resemblance.
The comparison was made taking into account the relative error of the friction
model proposed in the benchmark (symmetric Coulomb model with viscous
friction), and the models proposed here, see Table 6.9. In the benchmark, the
relative errors are 0.013752% and 0.0080248% for the estimation and validation
sets, respectively.

Figure 6.6: Comparison between the measured and estimated output given by
models ŷ2F

a
C and ŷ2F

s
T . It can be seen that measured and estimated position

have high correspondence, confirming the low relative errors given by Table
6.7

Tables 6.6 - 6.8 show the parameters of all the models and their evaluation
metrics. Considering the GBM approach (ŷ1), from the six proposed models,
only ŷ1F

s
T can bring some error improvement considering estimation and

validation sets. Table 6.7 shows clearly that the BGBM approach is the most
suitable for better modeling the position of the load of the EMPS. According
to the metrics, ŷ2F

s
V and ŷ2F

s
C have, respectively, the lowest relative errors

for estimation (εEst) with 0.0071464% and 0.0072538%. ŷ2F
s
T and ŷ2F

a
C with

0.0063456% and 0.0069405%, have respectively, the lowest relative errors for
the validation set (εV al). For the estimation set, all models of ŷ2 perform better
than the model proposed by the benchmark. We can see the same behavior
at the validation set, except by ŷ2F

a
F and ŷ2F

s
F models. Table 6.8 shows the

results of the EGBB approach (ŷ3). In this case, 50% of the models were able
to perform better than the original friction model proposed in the benchmark
for the validation set. The best friction models for this approach are ŷ3F

s
T and

ŷ3F
s
C .
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Table 6.9 shows the percentage of improvement achieved by each ap-
proach and for every model. The model with the highest relative error improve-
ment for the estimation set was ŷ2F

s
V (48.03%), followed by ŷ2F

s
C (47.25%) and

ŷ2F
s
T (46.68%). For the validation set, ŷ2F

s
T had the highest error improve-

ment percentage (20.92%), followed by ŷ3F
s
T and ŷ2F

a
C models with, 18.59%

and 13.51% respectively.

Table 6.6: Parameters and metrics of the GBM approach. ŷ1F
s
T and ŷ1F

s
V show

relative error improvement for the estimation set compared to ŷ1F
s
C , which

is the friction model proposed by the benchmark. Except by ŷ1F
a
F , ŷ1F

s
F and

ŷ1F
s
V all other models show relative error improvement.

Model Parameters εEst(%) εV al(%)

ŷ1FaC

M=95.15540; F+
V =166.7061;

F−V =240.4236; F+
C =20.1440; 0.0137580 0.0079672

F−C =20.6277;

ŷ1F sC
M=95.1089; FV =203.5034;
FC=20.3935; Of=-3.1648 0.0137522 0.0080248

ŷ1FaF

M=95.154; F+
V =166.71;

F−V =240.42; F+
C =20.144; 0.0139793 0.0120720

F−C =20.628; vo=0.0032239

ŷ1F sF

M=95.109; FV =203.5;
FC=20.393; Of=-3.1648 0.0139503 0.0121076
vo=0.0054125

ŷ1FaT

M=95.547; F+
V =178.48;

F−V =218.67; F+
C =25.014; 0.0149361 0.0079732

F−C =28.028; F+
S =25.014;

F−S =21.578; vS=0.004156;

ŷ1F sT

M=95.681; FV =203.36;
FS=17.023; FC=17.023; 0.0125696 0.0079662
vS=0.006464;Of=-4.1234

ŷ1FaV

M=95.153; F+
V =166.1;

F−V =240.19; F+
C =20.204; 0.0137678 0.0079584

F−C =20.651; F+
S =18.708;

F−S =20.058; vS=0.00063898
δσ=1.8258

ŷ1F sV

M=95.105; FV =200.85;
FC=20.639; FS=18.968; 0.0137384 0.0080252
Of=-3.1458; δσ=1.2375
vS=0.0054831

Table 6.7: Parameters and metrics of the BGBM approach. It shows that ŷ2F
s
V

and ŷ2F
s
T have the lowest relative errors for the estimation and validation sets

respectively.

Model na nb M εEst(%) εV al(%)
ŷ2FaC 5 13 10 0.0073630 0.0069405
ŷ2F sC 4 13 12 0.0072538 0.0070701
ŷ2FaF 3 13 14 0.0077180 0.0119043
ŷ2F sF 3 4 29 0.0081926 0.0108225
ŷ2FaT 6 3 10 0.0118427 0.0072983
ŷ2F sT 4 13 12 0.0073332 0.0063456
ŷ2FaV 4 6 15 0.0091737 0.0077414
ŷ2F sV 4 13 15 0.0071464 0.0073584
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Table 6.8: Parameters and metrics of the third approach. Model ŷ3F
s
T and ŷ3F

s
C

have lowest relative errors compared to the model proposed by the benchmark.

Model c w1 w2 εV al(%)
ŷ3FaC 3.986E-06 0.0279 0.9721 0.0072700
ŷ3F sC 3.248E-07 0.0716 0.9284 0.0071669
ŷ3FaF 5.223E-06 0.1173 0.8826 0.0121304
ŷ3F sF 7.612E-06 -0.4233 1.4232 0.0118544
ŷ3FaT 1.866E-05 -0.0438 1.0438 0.0118841
ŷ3F sT 8.767E-08 0.1184 0.8816 0.0065332
ŷ3FaV 3.695E-06 -0.9112 1.9112 0.0085389
ŷ3F sV 8.294E-07 0.0683 0.9317 0.0073771

Table 6.9: General comparison between all approaches. It shows that ŷ2F
s
V and

ŷ2F
s
T have the best performance for estimation and validation sets respectively.

Model ∆Est(%) ∆V al(%) Model ∆Est(%) ∆V al(%)
ŷ1 FaC -0.04 0.72 ŷ2FaT 13.89 9.05
ŷ2 FaC 46.46 13.51 ŷ3FaT - -22.76
ŷ3 FaC - 9.41 ŷ1F sT 8.60 0.73
ŷ2 F sC 47.25 11.90 ŷ2F sT 46.68 20.92
ŷ3 F sC - 10.69 ŷ3F sT - 18.59
ŷ1 FaF -1.65 -50.43 ŷ1FaV -0.11 0.83
ŷ2 FaF 43.88 -48.34 ŷ2FaV 33.29 3.53
ŷ3 FaF - -51.16 ŷ3FaV - -6.4
ŷ1 F sF -1.44 -50.88 ŷ1F sV 0.10 0.00
ŷ2 F sF 40.43 -34.86 ŷ2F sV 48.03 8.30
ŷ3 F sF - -47.72 ŷ3F sV - 8.07
ŷ1 FaT -8.61 0.64

The friction models proposed by the GBM approach has the lowest
performance among all approaches. It is due to the number of parameters being
estimated and also to the initial conditions, which have a high influence on the
performance of this approach. BGBM approach has shown to be efficient on the
error modeling since only two of sixteen models were not able to perform better
than the model proposed in the benchmark. Therefore, the EGBB approach has
also proven to be effective, which achieved better performance on 50% of the
models, among then ŷ3F

s
T achieved almost 20% of relative error improvement.

Finally, the models that smooth the discontinuity at zero velocity of the
Coulomb friction model have better performance, and the symmetric models
are also able to perform better than the asymmetric models.

6.3
Comparison of Metaheuristic Algorithms and Friction Models on the
Identification of a Positioning System

This section compares metaheuristic algorithms used to estimate the
dynamic parameters of EMPS as well as symmetric and asymmetric friction
models chosen to compensate for this phenomenon in the case study.
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6.3.1
Contributions

The contributions of this section are:

(i) Performance evaluation of five EAs in the task of estimating the dynamic
parameters of a positioning system;

(ii) Investigation of the best friction model to describe the friction behavior
of a positioning system.

6.3.2
Methods

The estimation of the dynamic parameters of the EMPS considers eight
different friction models, as introduced in Chapter 4, four symmetric and
four asymmetric. Here the most common version of the Fs

T friction model
was adopted [170–172]. The specific parameters of each algorithm are set as
suggested in the literature [126], they can be found in Tables 6.10 and 6.11.
The average minimum cost per function evaluation and the mean population
searching distance are presented to enable the analyses. The whole system was
simulated in the software MATLAB®.

Table 6.10: Specific parameters of each EA and how they were tuned. They are:
Initial pheromone amount (τ0); Evaporation rate (ρ); Elite ants per generation
(NACO); Scale Factor (F); Crossover constant (CR).

ACO BBO DE
Population size: 50 Population size: 50 Population size: 50
Generation limit: 100 Generation limit: 100 Generation limit: 100
τ0: 1e-6 Sinusoidal migration /bin variation
ρ: 0.9 Migration blend parameter: 0.50 F (constant): 0.4
NACO: 2 CR: 0.9

Table 6.11: Specific parameters of each EA and how they were tuned. They are:
Elite individuals per generation (NGA); Crossover type (Xover); Constriction
coefficient (KF ); Maximum learning rates (µl).

GA PSO
Population size: 50 Population size: 50
Generation limit: 100 Generation limit: 100
NGA: 2 KF : 0.25
ρc: 0.02 Neighborhood size: 6
Xover: single point µl: 2.5
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6.3.3
Results

Figures 6.7-6.9 show the results of the search quality metric and con-
vergence measure when five EAs are applied to the task of identifying the
dynamic parameters of the EMPS considering eight friction models. Each al-
gorithm runs 20 times with different random numbers of seeds. By the analyses
of the curves in Figures 6.7 and 6.8, it is possible to summarize an applica-
ble pattern to all five EAs. The solution is rapidly improved during the early
searching stage, followed by gradual enhancement with a slow rate. DE has the
lowest minimum cost during the early stage, however, as the number of func-
tion evaluations increases, it was outperformed by GA and BBO considering
the cases of F a

F , F a
V and F s

V friction models. We can distinguish two different
behaviors among the five EAs. The first group composed of DE and PSO is
characterized by rapid improvement during the early searching stage followed
by a steady-state condition (BBO seems to have a steady-state condition for
F a
T ). The remaining EAs belong to the other group, which is also character-

ized by rapid improvement during the early searching stage, however, they can
consistently improve their searching quality throughout the searching process.
But, in later stages, the value of the cost function decreases slowly.

Figure 6.7: Minimum value of the cost function of the asymmetric friction
models. It is possible to see that DE is the first to achieve steady-state condition
compared to the other EAs (normally before 1000 evaluations/20 generations),
it is followed by PSO. DE has on average lower minimum cost per function
evaluation, but it was outperformed by BBO and GA for F a

V case.

Figure 6.9 shows the convergence metric when ACO, BBO, DE, GA, and
PSO are compared. As shown, the distmean(G) values decrease at a faster rate
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Figure 6.8: Minimum value of the cost function of the symmetric friction
models. The figure shows that the behavior of the EAs for both symmetric
and asymmetric friction models are the same. It can be seen clearly that from
the five EAs, one group is composed of DE and PSO and the other by ACO,
BBO, and GA. The former group achieved steady-state condition before 2000
cost function evaluations (40 generations) while the other keeps decreasing its
cost slowly, but not necessarily achieving steady-state condition.

during the early stage, it is related to the rapid improvement of the quality
of the solution shown by Figures 6.7 and 6.8. Concerning the convergence
speed, ACO has the fastest convergence speed in the initial searching stage for
all friction models, but DE, with low fluctuation though, and PSO converge
quickly during the middle and later stages. ACO keeps fluctuating after
achieving low distmean(G), GA has also this fluctuation but with much higher
distmean(G). It means that GA maintains a high population diversity during
the entire process. The convergence speed is not affected by the different
friction models. Figure 6.9 also shows, in accordance with Figures 6.7 and
6.8, that the focus of DE and PSO lies on the searching in the surrounding
regions of the identified best solution.

Tables A-1 and A-2 show the average and standard deviation of the
estimated parameters when the asymmetric and symmetric versions of each
friction model were considered. It can be noticed that, in general, there is
no significant difference in the values estimated by each EA for every friction
model. However, F+

V and F−V , coefficients for positive and negative velocities
(asymmetric models), indicate an asymmetric behavior of the friction since
they are significantly different from each other.

Tables A-3 and A-4 show, respectively, the relative errors of the simula-
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Figure 6.9: Mean population searching distance per generation distmean(G).
Except by GA, the distance between the members of the population is close
to zero before 50 generations. The lower average distance indicates that
the algorithm is searching for a solution under a tight search space, i.e,
the algorithm is converging. ACO can achieve a small distance among the
population members before all other EAs, but it fluctuates in the later search
stage, while PSO does not show fluctuations, which is particularly high by GA.

tion of the position of the joint when both asymmetric and symmetric Coulomb
friction models are considered. µ and σ are, respectively, the average and stan-
dard deviation of each column. The percentage of improvement achieved by
each test over the parameter estimation approach using the standard Least-
Squares inverse dynamic model (LS-IDIM) employed on the benchmark is
represented by ∆Val(%). The comparison is performed with the relative er-
rors of [176], see Table 6.12. Considering the asymmetric model, the LS-IDM
method can outperform the results achieved by the EAs, except by two tests:
number 2 (GA) and number 11 (ACO) with 0.007876% and 0.007915% of rel-
ative error, respectively. When the symmetric friction models are compared,
more tests (highlighted in boldface) were able to outperform the benchmark.

Table 6.12: Relative errors of the IDM approach.
Model εEst εVal Simulation performed with parameters of
Assymetric 0.013769% 0.0079575% [176]Symmetric 0.013752% 0.0080248%
Assymetric 0.013777% 0.0079494% [179]Symmetric 0.01376% 0.0080178%

Tables A-5 to A-10 present the results of three others friction models
in their symmetric and asymmetric versions, these models are not considered
in [176] and [179] for the study of the frictional behavior of the EMPS. Their
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relative errors were compared with those of [176] and [179] and are highlighted
in boldface if any test can outperform at least one of the relative errors
of [176] and [179]. In general, the average relative error for the estimation set is
lower when compared to those of [176] and [179]. Considering estimation and
validation sets, the relative error was lower for all EAs only when F a

V was used
as the friction model. The lowest relative errors are on average 0.013055% and
0.007930% for estimation and validation sets respectively, they were achieved
by PSO and GA using F a

F as the friction model.
Table 6.13 shows a general rank considering each test individually,

∆asym(%) and ∆sym(%) consider the improvement over the average of the
relative errors of the simulations performed by [176] and the simulations using
the parameters estimated by [179], see Table 6.12. DE and PSO were able to
find the best solutions, the former achieved 26.86% and 27.48% of relative error
improvement for the asymmetric and symmetric models respectively, while the
latter achieved 10.44% and 11.20%. Considering the first 10 best tests, DE has
five of them, followed by GA and ACO with two and PSO with one test. The
best results were achieved by F a

T and F s
T friction models. According to Table

6.13, the best results were achieved when the friction models that smooth the
discontinuity at zero velocity of Coulomb’s friction model were considered.

Table 6.13: General rank of the 30 best friction models.
Test EA Fric. Model εVal(%) ∆asym(%) ∆sym(%)
11 DE FaT 5.817E-03 26.86 27.48
10 DE FaT 5.971E-03 24.93 25.56
7 DE FaT 7.040E-03 11.49 12.24
2 PSO F sT 7.123E-03 10.44 11.20
12 GA FaT 7.201E-03 9.45 10.22
19 DE FaT 7.231E-03 9.09 9.86
10 ACO FaT 7.271E-03 8.58 9.35
5 DE FaT 7.419E-03 6.72 7.50
6 GA FaT 7.467E-03 6.12 6.91
7 ACO F sT 7.542E-03 5.17 5.97
10 GA FaT 7.566E-03 4.88 5.68
13 ACO FaT 7.614E-03 4.26 5.07
17 ACO FaT 7.681E-03 3.42 4.24
19 ACO FaT 7.688E-03 3.34 4.16
4 GA FaF 7.717E-03 2.97 3.79
6 ACO FaT 7.720E-03 2.94 3.76
12 GA FaF 7.723E-03 2.90 3.72
10 ACO F sV 7.756E-03 2.48 3.31
14 DE FaT 7.767E-03 2.35 3.17
5 DE FaF 7.770E-03 2.31 3.13
1 ACO FaV 7.770E-03 2.31 3.13
4 GA FaT 7.787E-03 2.09 2.92
5 ACO F sT 7.789E-03 2.07 2.90
1 DE FaF 7.800E-03 1.93 2.76
9 PSO FaV 7.803E-03 1.89 2.72
14 PSO F sT 7.803E-03 1.89 2.72
18 GA F sF 7.804E-03 1.88 2.71
20 GA FaT 7.811E-03 1.79 2.63
1 GA F sF 7.818E-03 1.71 2.54
3 ACO FaV 7.836E-03 1.48 2.31

Figure 6.10 shows the result of a multiple comparison procedure. Multiple
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pairwise comparisons were performed to verify whether the results achieved
by each EA and each friction model are significantly different among their
groups. Since the distribution of the data (relative errors) is non-normal, the
nonparametric Friedman’s test was used to analyze the effect of the EAs
and the friction models on the relative error. All comparison intervals for
the EAs overlap, which means that they are not significantly different from
one another on the task of searching for the optimal solution. Concerning the
friction models, there is no significant difference under the estimated position
of the EMPS if one uses any of them to model the friction term, except by
F s
T and F a

V . These are the models that are significantly different from each
other for the EMPS case study. Tables 6.14 and 6.15 show the probability
values (p-Values) of the pairwise comparison. For 95% of confidence level,
the p-Value of a pairwise comparison should be lower than 0.05 to assume
a significant difference under the groups being compared. According to the
results, also already shown in Figure 6.10, none of the groups being compared
are significantly different from each other considering the EAs, but the p-Value
for F s

T and F a
V comparison is 0.016487 for the validation set. This confirms the

information given in Figure 6.10.

Table 6.14: Probability value (p-Value) for multiple comparisons between AEs.
EA EA p-Value Estimation p-Value Validation
ACO BBO 0.997 0.81948
ACO DE 0.99451 0.95689
ACO GA 0.97799 0.91201
ACO PSO 1 0.99982
BBO DE 1 0.99573
BBO GA 0.99931 0.99951
BBO PSO 0.9971 0.72526
DE GA 99977 0.99985
DE PSO 0.99467 0.90872
GA PSO 0.97841 0.84269

Table 6.15: Probability value (p-Value) for multiple comparisons between
friction models.

Groups p-Value Est. p-Value Val. Groups p-Value Est. p-Value Val.
FaC - F sC 0.99999 0.98129 FaF - FaT 0.99744 0.88076
FaC - FaF 1 0.99883 FaF - F sT 0.85155 0.46403
FaC - F sF 1 0.99439 FaF - FaV 1 0.87692
FaC - FaT 0.98843 0.51501 FaF - F sV 0.98972 1
FaC - F sT 0.74879 0.14483 F sF - FaT 0.99837 0.9386
FaC - FaV 0.99996 0.99535 F sF - F sT 0.87256 0.58134
FaC - F sV 0.99782 0.9988 F sF - FaV 1 0.79351
F sC - FaF 0.99976 0.99997 F sF - F sV 0.98591 1
F sC - F sF 0.99955 1 FaT - F sT 0.99612 0.99754
F sC - FaT 0.94326 0.974 FaT - FaV 0.9996 0.12148
F sC - F sT 0.55835 0.69838 FaT - F sV 0.78624 0.88174
F sC - FaV 0.9982 0.68792 F sT - FaV 0.91909 0.016487
F sC - F sV 0.99995 0.99997 F sT - F sV 0.31081 0.46564
FaF - F sF 1 1 FaV - F sV 0.97062 0.87591
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Figure 6.10: Multicomparison test. Comparison intervals are overlapping each
other when EAs are compared. It indicates that the algorithms are not
significantly different from one another on the task of searching for the optimal
solution. Concerning the friction models, there is no significant difference under
the estimated position of the EMPS if one uses any of them, except by F s

T and
F a
V when they are tested on the validation set.

6.4
Identification of the TX40 Dynamic Parameters

In this section, different classes of algorithms used to estimate the
dynamic parameters of a robotic manipulator that considers a nonlinear
friction model are compared.

6.4.1
Contribution

The contribution of this section is:

(i) Identification of the dynamic parameters of a TX40 robot considering a
nonlinear friction model with Stribeck effect.
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6.4.2
Methods

The IDM used for the Stäubli TX40 robot is given by Equation 6-4:

τidm = ZZq̈ + τGrav(q) + τFric(q̇) + offset (6-4)
The gravity torque of the second link and the friction term are, respec-

tively, expressed by:

τGrav = −gMXcos(q) + gMY sin(q) (6-5)

τFric(q̇) = Fvq̇ +
(
FC + (FS − FC)e−( ‖q̇‖vs )δσ

)
sign(q̇) (6-6)

The estimation of the dynamic parameters of the TX40 robot, which
considers a nonlinear friction model, will be performed by five algorithms. The
specific parameters of each EA are set as suggested in the literature [126], they
can be found in Table 6.16.

Table 6.16: Specific parameters of each EA and how they were tuned. They are:
Scale Factor (F); Crossover constant (CR); Elite individuals per generation
(NGA); Crossover type (Xover); Mutation rate (ρc); Constriction coefficient
(KF ); Maximum learning rates (µl).

DE GA PSO
Population size: 50 Population size: 50 Population size: 50
Generation limit: 100 Generation limit: 100 Generation limit: 100
/bin variation NGA: 2 KF : 0.25
F (constant): 0.4 ρc: 0.02 Neighborhood size: 6
CR: 0.9 Xover: single point µl: 2.5

The other algorithms used in this work are part of an open-source
optimization library called Scikit-Optimize. The library has five minimization
algorithms, two of which will be used in this work: forest_minimize, and
gp_minimize. The former is a sequential optimization algorithm that uses
decision trees and the latter is a Bayesian optimization algorithm that uses
a Gaussian Process. They will be called here DT, and BO respectively. BO
and DT algorithms start with 10 initial points. DT algorithm uses extra
trees as its regressor. The cost function is called 100 times by BO and DT,
which acquisition functions are the lower confidence bound (LCB) and negative
probability of improvement (PI), respectively.

6.4.3
Results

Figure 6.11 shows the progress of the optimization process. All algorithms
run 10 times. By the analyses of the curves in Figure 6.11 we notice that the
tree EAs present the same behavior shown in the previous case study. DE and
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PSO are characterized by a rapid improvement during the early searching stage
followed by a steady-state condition. DE converges until the 30th generation
and PSO until the 40th. GA is also characterized by a rapid improvement
during the early searching stage; however, it can consistently improve its
searching quality throughout the searching process, but in later stages, the
value of the cost function decreases slowly. It seems that GA has converged
until the 100th generation.

The cost function fluctuates in the initial stages and presents a sudden
drop before 20 calls for BO and DT algorithms. DT algorithm converges up to
60 cost function calls and from there it presents only small fluctuations in its
values. It is possible to observe that, for the BO algorithm, the cost function
does not show any considerable fluctuation after 30 calls and that its value
falls at a very low rate until reaching 100 function calls.

Figure 6.11: Minimum value of the cost function of the asymmetric friction
models.

Figure 6.12 shows that the distmean(G) values decrease at a faster rate
during the early stage, which is related to the rapid improvement of the quality
of the solution in Figure 6.11. GA has fluctuation in its distmean(G), meaning
that GA, compared to DE and PSO, maintains higher population diversity
during the entire process.

Tables 6.17 and 6.18 show the dynamic parameters estimated by each
algorithm, the total inertia, and gravity terms are following those found in
[179], but the author has considered a linear friction model. Table 6.19 shows
the average time spent by each algorithm. It is possible to notice that the DE
algorithm demands, on average, lower computational cost than the other EAs
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Figure 6.12: Mean population searching distance per generation distmean(G).

in a total of 100 generations. BO is generally used in applications where the
cost function is not known (black-box applications). In this case study, the
BO algorithm is not a good choice since simpler algorithms can estimate the
dynamic parameters of the system with lower computational cost presenting a
lower relative error.

Table 6.17: Dynamic parameters of the TX40 robot estimated by the EAs.
Parameter DE GA PSO
ZZ 1.5431 ± 0.099041 1.4625 ±0.11511 1.7759 ± 0.27671
MX 2.8351 ± 0.0045724 2.8305 ± 0.032262 2.7157 ± 0.084109
MY 0.011162 ± 0.040204 0.0087263 ± 0.06556 0.043832 ± 0.045052
Fv 6.1622 ± 0.43446 5.8579 ± 0.51648 7.6546 ± 1.3917
Fc 5.6851 ± 0.28933 5.8252 ± 0.30816 6.1318 ± 0.36578
Fs 9.2543 ± 1.4706 8.4545 ± 0.5738 8.0299 ± 0.89416
Offset -0.069789 ± 0.29188 -0.059046 ± 0.41107 0.1021 ± 0.21679
vs 0.043739 ± 0.018775 0.046754 ± 0.013601 0.057701 ± 0.015954
δσ 1.2634 ± 0.51774 1.7986 ± 0.68804 1.4888 ± 0.5117

The relative error of each algorithm was calculated after an OSA predic-
tion, the results are in Table 6.20. The EAs have, on average, lower relative
error when compared with the other algorithms. DE is the algorithm with the
lowest relative error among all (7,2133%), it must be considered that DT pre-
sented a relative error (7,9176%) similar to those achieved by DE and GA, but
with lower computational cost.

Figure 6.13 shows the results of the OSA prediction of the torque of the
second joint. It is possible to notice that the algorithms can predict the torque
in the second joint of the robot reasonably well. Through Equation (6-6) it is
possible to reconstruct the shape of the friction in the second joint of the robot.
Figure 6.14 shows the results of the reconstructed friction with the parameters
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Table 6.18: Dynamic parameters of the TX40 robot estimated by BO and DT
algorithms.

Parameter BO DT
ZZ 1.741209 ± 0.514135 1.638843 ± 0.453103
MX 2.716822 ± 0.186321 2.852588 ± 0.023148
MY 0.085575 ± 0.101936 0.038281 ± 0.077164
Fv 7.992918 ± 1.458288 5.995656 ± 1.027730
Fc 6.090332 ± 0.319006 5.911671 ± 0.511094
Fs 8.627831 ± 1.348596 8.718668 ± 1.386991
vs 0.055201 ± 0.018365 0.051831 ± 0.022372
δσ 1.757256 ± 0.357630 1.598269 ± 0.832302
Offset 0.137157 ± 0.255402 0.237290 ± 0.517151

Table 6.19: Computational cost of each algorithm. 100 cost function evaluations
were considered for the BO, and DT algorithms and 100 generations were used
for the AEs.

Algorithm Elapsed time (s) Algorithm Elapsed time (s)
DE 171.16 ± 3.3599 BO 61.439239 ± 1.309274
GA 174.91 ± 2.4036 DT 26.614644 ± 1.309274
PSO 179.58 ± 3.7509

Table 6.20: Relative error of each algorithm.
Algorithm Relative error (%) Algorithm Relative error (%)
DE 7.2133 ± 0.2903 BO 11.482 ± 3.7563
GA 7.4285 ± 0.44141 DT 7.9176 ± 0.73242
PSO 9.3014 ± 1.4671

estimated by each algorithm. It is possible to notice that the reconstructed
friction form is following the expected shape.

Figure 6.13: OSA prediction of the torque of the second joint.
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Figure 6.14: Friction estimated by all methods.
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7
Conclusions

The general objective of this work was to develop different classes of
models capable of accurately simulating the output variable of a system and
to evaluate the efficiency of the optimization algorithms used in the parameter
estimation task. Besides, this study aimed to assess which friction model would
be the most appropriate to describe this phenomenon in a positioning system.

The results show that nonlinear friction models were more adequate
to describe this phenomenon, which had an asymmetric behavior, in the
positioning system. The simulations performed with parameters estimated by
the evolutionary algorithms showed better results. The decision tree-based
optimizer, used in the second case study, proved to be equally effective
compared to evolutionary algorithms. Finally, the results show that combining
models is an effective alternative to obtain more accurate simulation results.

In the first section of Chapter 6 different friction models have been
considered in the task of estimating the dynamic parameters of the EMPS.
The results have shown that a significant improvement can be achieved by
using more complex friction models. According to the models adopted, the
results suggest that the friction has an asymmetric behavior since terms like
F+
K and F−K , F+

V and F−V are significantly different and the estimated mass
has no significant variance when both symmetric and asymmetric models are
compared. According to Figure 6.3(a), there is a high agreement between both
measured and estimated forces, which is also evident when we see Figure 6.3(b).
The best model has low standard deviation and relative error, lower than 2%
and 4%, respectively. It has also an R2 almost equal to unity.

In Section 6.2 of Chapter 6 grey and black-box models were used to
estimate the position of the joint of the EMPS. According to the results, a
significant improvement can be achieved by modeling the simulation error.
An improvement higher than 20% was achieved by combining the modeled
error with a grey-box model. The GBM approach has the lowest performance
among all approaches, it is due to the influence of the number of parameters
being estimated and the initial conditions. Because of this and since there
is no significant difference between the relative errors of the friction models
of the GBM approach, it is not possible to conclude whether asymmetric or
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symmetric friction models are better to describe the behavior of the friction in
the EMPS. The ensemble of ŷ1 and ŷ2 has also proven to be effective, achieved
almost 20% of relative error improvement.

In the third section of Chapter 6, the performance of five metaheuristic
algorithms used to estimate the dynamic parameters of the EMPS were
compared, in addition to investigating which friction model is the most suitable
to describe the friction behavior of the case study. The results of the simulations
performed with the parameters estimated by the EAs were compared with the
results of other studies.

The results have shown that DE and PSO have different behavior
compared to ACO, BBO, and GA. The main difference lies in the fact that
the second group of EAs can consistently improve their searching quality
throughout the searching process, while the first one rapidly achieves a steady-
state condition. ACO has the fastest convergence speed in the initial searching
stage, but DE and PSO converge quickly during the middle and later stages.
GA has the highest distmean(G) and fluctuations amplitudes, meaning that it
maintains a high population diversity in every search stage.

The estimated coefficients of the asymmetric friction models indicate
asymmetric behavior of the friction since F+

V and F−V are significantly different
for all friction models. Some tests of the asymmetric and symmetric Coulomb
model performed with the estimated parameters were able to slightly out-
perform the LS-IDIM approach. However, the suggested friction models were
able to bring higher relative error improvement, especially F a

T and F s
T friction

models. These models smooth the discontinuity at zero velocity of Coulomb’s
friction model by an exponential term in their formulation. A non-parametric
multiple comparison procedure among the EAs has stated that there is no sig-
nificant difference among the EAs in terms of relative error improvement for
the number of function evaluations tested. However, the PSO algorithm was
able to converge faster than the others, as shown in Figure 6.9. Regarding the
friction models, F s

T and F a
V can be considered significantly different from each

other for the EMPS case study.
The last section of Chapter 6 addresses the second case study, five

optimization algorithms were chosen to identify the dynamic parameters of
a TX40 robot. The AEs had, on average, superior performance compared
to the other algorithms when the relative error was considered. However,
the optimization algorithm using decision trees achieved similar performance
compared to DE and GA algorithms and superior to PSO. Among the EAs,
DE presented the best performance, with the lowest computational cost and
the lowest relative error. Among the other algorithms, BO has the highest
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computational cost and relative error. DT, DE, and GA were the optimizers
that presented the lowest relative errors and also the lowest computational
cost.

The dynamic parameters estimated by the algorithms were used to
predict the torque of the second joint and the shape of the friction torque.
The results of the OSA prediction show that with the estimated parameters it
was possible to predict the torque in the second joint with reasonable precision
and that the friction shape is consistent with the expected.

7.1
Final Comments

It is important to test more case studies to verify more precisely the
benefits of one optimization algorithm over another. More choices of the
settings of the hyperparameters for the comparison of the EAs should be also
considered.

7.2
Future Work

Recently, Physics-Informed neural networks have been used successfully
to solve inverse problems involving differential equations [187–189]. This
motivates the author to use this approach in future system identification works.
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Table A-1: Dynamic parameters of the asymmetric friction models.
Model EA M F+

C F−C F+
V F−V F+

S F−S δσ vS vo

FaC

ACO 95.31± 0.18 19.68± 0.88 20.5± 1.24 169.11± 9.56 239.36± 11.89 - - - - -
BBO 95.33± 0.07 19.7± 0.22 20.09± 0.14 168.24± 2.68 243.13± 1.53 - - - - -
DE 95.32± 0.08 19.48± 0.5 20.07± 0.55 170.75± 5.55 243.61± 5.6 - - - - -
GA 95.22± 0.27 19.59± 0.59 19.55± 0.41 169.78± 5.48 249.89± 4.75 - - - - -
PSO 95.31± 0.42 20± 0.29 20.31± 0.37 164.01± 3.6 240.03± 4.68 - - - - -

FaF

ACO 95.26± 0.42 20.73± 1.41 20.5± 1.48 156.58± 14.93 239.06± 14.43 - - - - 0.11± 0.01
BBO 95.31± 0.06 19.97± 0.28 20.03± 0.18 165.08± 3.05 243.74± 1.95 - - - - 0.05± 0.01
DE 95.24± 0.21 19.92± 0.88 19.82± 0.45 165.77± 10.35 246.08± 5.01 - - - - 0.06± 0.03
GA 95.29± 0.20 19.57± 0.54 19.63± 0.45 170.13± 5.42 248.13± 4.94 - - - - 0.04± 0.03
PSO 95.34± 1.65 17.86± 1.2 18.07± 1.02 166.21± 10.22 244.57± 9.48 - - - - 0.05± 0.02

FaT

ACO 95.70± 0.68 15.29± 5.86 25.93± 7.11 198.13± 33.66 206.98± 35.69 23.35± 7.21 22.67± 8.51 - 0.16± 0.03 -
BBO 95.40± 0.24 17.69± 1.12 23.95± 1.48 187.13± 6.92 205.90± 10.46 21.28± 0.59 23.12± 1.58 - 0.07± 0.01 -
DE 95.40± 0.36 18.20± 7.87 20.71± 9.64 180.31± 49.54 236.48± 61.60 19.53± 3.91 20.07± 9.09 - 0.104± 0.04 -
GA 95.30± 0.52 15.94± 5.60 25.88± 7.10 195.81± 31.71 210.33± 32.60 21.09± 3.23 25.13± 7.36 - 0.09± 0.01 -
PSO 95.61± 1.22 18.52± 1.65 24.34± 2.94 186.22± 9.91 202.18± 14.06 22.90± 2.38 23.42± 3.26 - 0.07± 0.01 -

FaV

ACO 95.17± 1.08 21.89± 3.67 21.24± 3.12 159.49± 21.25 238.03± 20.4 16.81± 3.23 18.23± 3.22 1.75± 0.66 0.1± 0.07 -
BBO 95.27± 0.12 22.06± 0.66 21.4± 0.62 147.08± 5.72 231.64± 5.79 14.2± 1.26 16.02± 1.05 1.55± 0.22 0.04± 0.03 -
DE 95.3± 0.24 22.64± 5.93 20.09± 4.15 151.55± 30.45 244.57± 24.92 16.4± 2.96 17.79± 2.15 1.74± 0.83 0.07± 0.06 -
GA 95.22± 0.32 21.94± 2.57 21.53± 1.67 150.50± 19.70 230.91± 12.63 11.68± 3.28 12.79± 4.29 1.33± 0.46 0.02± 0.02 -
PSO 95.35± 0.77 21.65± 1.03 21.6± 1.02 153.77± 8.98 231.93± 8.94 17.79± 1.35 18.48± 1.8 1.92± 0.21 0.05± 0.01 -
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Table A-2: Dynamic parameters of the symmetric friction models.
Model EA M FC FV FS Off δσ vS vo

F sC

ACO 95.37± 0.19 19.46± 1.25 209.85± 15.14 - -3.14± 0.07 - - -
BBO 95.27± 0.03 19.65± 0.19 208.27± 2.27 - -3.12± 0.03 - - -
DE 95.28± 0.001 19.4± 0.005 211.36± 0.06 - -3.13± 0.001 - - -
GA 95.31± 0.20 19.32± 0.73 212.48± 8.33 - -3.11± 0.12 - - -
PSO 95.04± 0.53 19.88± 0.57 206.4± 5.96 - -2.82± 0.24 - - -

F sF

ACO 95.24± 0.44 19.59± 0.89 208.69± 8.02 - -3.19± 0.29 - - 0.11± 0.01
BBO 95.27± 0.03 19.66± 0.11 208.4± 1.22 - -3.12± 0.01 - - 0.05± 0.01
DE 95.28± 0.01 19.44± 0.12 210.89± 1.39 - -3.13± 0.004 - - 0.07± 0.02
GA 95.30± 0.08 19.50± 0.77 210.06± 7.5 - -3.09± 0.09 - - 0.04± 0.03
PSO 95.45± 0.88 19.87± 0.65 203.98± 6.57 - -2.51± 0.62 - - 0.05± 0.02

F sT

ACO 95.05± 0.41 19.17± 2.38 200.34± 28.39 17.64± 4.12 -1.12± 2.40 - 0.11± 0.06
BBO 95.35± 0.26 20.51± 0.55 177.76± 4.30 19.57± 0.77 -1.12 ± 0.50 - 0.06± 0.01
DE 94.33± 0.15 19.66± 0.51 179.63± 13.77 17.99± 1.41 -0.23± 1.61 - 0.07± 0.02
GA 95.30± 1.48 19.46± 1.27 176.65± 18.16 17.15± 2.18 0.53± 2.06 - 0.08± 0.02
PSO 95.34± 1.23 20.12± 1.15 187.54± 12.75 19.28± 1.53 -0.97± 1.14 - 0.06± 0.01

F sV

ACO 95.29± 0.8 20.21± 5.25 196.56± 35.68 17.51± 2.45 -3.29± 0.33 2.07± 0.77 0.08± 0.05
BBO 95.23± 0.12 20.94± 1.14 196.72± 9.92 14.24± 1.72 -3.05± 0.08 1.66± 0.4 0.02± 0.02
DE 95.3± 0.18 18.2± 10.53 222.11± 58.98 15.67± 4.82 -3.14± 0.05 2.18± 1.28 0.07± 0.03
GA 95.28± 0.32 22.55± 3.92 182.10± 31.52 15.02± 2.86 -3.13± 0.23 1.51± 0.69 0.03± 0.03
PSO 95.1± 0.66 20.54± 2.98 200.13± 25.14 18.28± 1.68 -2.78± 0.34 1.95± 0.37 0.05± 0.02
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Table A-3: Evaluation Metrics of F a
C friction model.

Test ACO ∆Val(%) BBO ∆Val(%) DE ∆Val(%) GA ∆Val(%) PSO ∆Val(%)
1 8.030E-03 -0.91 8.086E-03 -1.61 8.033E-03 -0.95 8.023E-03 -0.82 8.144E-03 -2.35
2 8.067E-03 -1.38 8.052E-03 -1.19 8.061E-03 -1.30 7.876E-03 1.02 8.071E-03 -1.43
3 8.030E-03 -0.92 8.056E-03 -1.23 8.033E-03 -0.95 8.019E-03 -0.77 8.119E-03 -2.03
4 8.052E-03 -1.19 8.046E-03 -1.11 8.074E-03 -1.46 8.087E-03 -1.62 8.079E-03 -1.53
5 7.967E-03 -0.13 8.051E-03 -1.18 8.033E-03 -0.95 7.991E-03 -0.42 8.065E-03 -1.36
6 8.047E-03 -1.13 8.052E-03 -1.18 8.036E-03 -0.99 8.078E-03 -1.51 8.136E-03 -2.24
7 8.000E-03 -0.53 8.065E-03 -1.35 8.035E-03 -0.98 8.086E-03 -1.61 8.062E-03 -1.31
8 8.109E-03 -1.91 8.070E-03 -1.42 8.051E-03 -1.17 8.068E-03 -1.39 8.113E-03 -1.95
9 8.056E-03 -1.24 8.063E-03 -1.32 8.046E-03 -1.12 7.975E-03 -0.23 8.085E-03 -1.60
10 8.024E-03 -0.83 8.038E-03 -1.01 8.067E-03 -1.38 7.968E-03 -0.13 8.104E-03 -1.84
11 7.915E-03 0.54 8.057E-03 -1.25 8.033E-03 -0.95 7.986E-03 -0.35 8.087E-03 -1.62
12 8.091E-03 -1.68 8.063E-03 -1.33 8.033E-03 -0.95 8.022E-03 -0.81 8.093E-03 -1.70
13 8.043E-03 -1.07 8.046E-03 -1.11 8.039E-03 -1.03 7.983E-03 -0.32 8.098E-03 -1.77
14 8.075E-03 -1.48 8.067E-03 -1.37 8.036E-03 -0.98 8.126E-03 -2.12 8.086E-03 -1.62
15 8.082E-03 -1.56 8.050E-03 -1.17 8.061E-03 -1.30 8.017E-03 -0.74 8.093E-03 -1.71
16 8.029E-03 -0.90 8.042E-03 -1.06 8.058E-03 -1.27 7.993E-03 -0.44 8.131E-03 -2.19
17 8.168E-03 -2.65 8.059E-03 -1.27 8.036E-03 -0.99 8.002E-03 -0.56 8.100E-03 -1.79
18 7.973E-03 -0.20 8.062E-03 -1.31 8.051E-03 -1.17 8.090E-03 -1.67 8.111E-03 -1.93
19 8.065E-03 -1.36 8.060E-03 -1.28 8.033E-03 -0.95 8.073E-03 -1.45 8.082E-03 -1.56
20 8.014E-03 -0.71 8.074E-03 -1.47 8.069E-03 -1.40 8.030E-03 -0.91 8.053E-03 -1.20
µ 8.042E-03 -1.06 8.058E-03 -1.26 8.046E-03 -1.11 8.025E-03 -0.84 8.096E-03 -1.74
σ 5.33E-05 6.70E-01 1.12E-05 1.41E-01 1.39E-05 1.74E-01 5.61E-05 7.05E-01 2.42E-05 3.04E-01
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Table A-4: Evaluation Metrics of F s
C friction model.

Test ACO ∆Val(%) BBO ∆Val(%) DE ∆Val(%) GA ∆Val(%) PSO ∆Val(%)
1 8.150E-03 -1.56 8.130E-03 -1.31 8.102E-03 -0.96 8.072E-03 -0.59 8.126E-03 -1.27
2 8.241E-03 -2.69 8.119E-03 -1.17 8.102E-03 -0.96 8.149E-03 -1.55 8.121E-03 -1.19
3 8.437E-03 -5.14 8.104E-03 -0.98 8.102E-03 -0.96 8.195E-03 -2.12 8.201E-03 -2.19
4 7.978E-03 0.58 8.155E-03 -1.63 8.102E-03 -0.96 8.001E-03 0.30 8.119E-03 -1.17
5 7.991E-03 0.42 8.101E-03 -0.96 8.102E-03 -0.96 8.182E-03 -1.96 8.103E-03 -0.98
6 8.024E-03 0.01 8.110E-03 -1.06 8.102E-03 -0.96 8.203E-03 -2.22 8.151E-03 -1.57
7 8.111E-03 -1.08 8.105E-03 -1.00 8.102E-03 -0.96 8.051E-03 -0.33 8.189E-03 -2.05
8 8.148E-03 -1.54 8.129E-03 -1.30 8.102E-03 -0.96 8.019E-03 0.08 8.114E-03 -1.11
9 8.275E-03 -3.11 8.098E-03 -0.91 8.103E-03 -0.97 8.139E-03 -1.42 8.116E-03 -1.14
10 8.149E-03 -1.55 8.123E-03 -1.22 8.102E-03 -0.96 8.106E-03 -1.01 8.194E-03 -2.11
11 8.129E-03 -1.30 8.154E-03 -1.61 8.102E-03 -0.96 8.114E-03 -1.11 8.121E-03 -1.20
12 7.973E-03 0.64 8.120E-03 -1.18 8.102E-03 -0.96 7.974E-03 0.63 8.160E-03 -1.69
13 8.179E-03 -1.93 8.104E-03 -0.99 8.102E-03 -0.96 8.092E-03 -0.83 8.138E-03 -1.41
14 8.075E-03 -0.62 8.117E-03 -1.15 8.102E-03 -0.96 8.121E-03 -1.20 8.147E-03 -1.52
15 8.099E-03 -0.92 8.150E-03 -1.57 8.102E-03 -0.96 8.112E-03 -1.08 8.156E-03 -1.64
16 8.250E-03 -2.81 8.127E-03 -1.28 8.102E-03 -0.96 8.027E-03 -0.02 8.115E-03 -1.13
17 8.205E-03 -2.25 8.188E-03 -2.03 8.102E-03 -0.96 8.063E-03 -0.48 8.103E-03 -0.97
18 8.025E-03 -0.01 8.103E-03 -0.97 8.102E-03 -0.96 7.963E-03 0.77 8.128E-03 -1.29
19 8.171E-03 -1.82 8.117E-03 -1.15 8.102E-03 -0.96 8.129E-03 -1.30 8.113E-03 -1.10
20 8.142E-03 -1.46 8.114E-03 -1.11 8.102E-03 -0.96 8.169E-03 -1.79 8.117E-03 -1.15
µ 8.138E-03 -1.41 8.123E-03 -1.23 8.102E-03 -0.96 8.094E-03 -0.86 8.137E-03 -1.39
σ 1.107E-04 1.38E+00 2.231E-05 2.78E-01 2.257E-07 2.81E-03 6.966E-05 8.68E-01 2.915E-05 3.63E-01
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Table A-5: Evaluation Metrics of F a
F friction model.

Test ACO BBO DE GA PSO
number εEst εVal εEst εVal εEst εVal εEst εVal εEst εVal
1 1.342E-02 8.618E-03 1.373E-02 8.027E-03 1.385E-02 7.800E-03 1.362E-02 8.161E-03 1.316E-02 8.697E-03
2 1.313E-02 9.074E-03 1.369E-02 8.064E-03 1.363E-02 8.280E-03 1.375E-02 8.033E-03 1.316E-02 8.694E-03
3 1.328E-02 8.928E-03 1.378E-02 7.912E-03 1.376E-02 7.924E-03 1.382E-02 7.799E-03 1.303E-02 8.774E-03
4 1.330E-02 8.760E-03 1.377E-02 7.930E-03 1.344E-02 8.673E-03 1.391E-02 7.717E-03 1.330E-02 8.519E-03
5 1.329E-02 8.783E-03 1.372E-02 7.966E-03 1.385E-02 7.770E-03 1.387E-02 7.752E-03 1.288E-02 8.864E-03
6 1.332E-02 8.820E-03 1.364E-02 8.196E-03 1.379E-02 7.877E-03 1.379E-02 7.931E-03 1.307E-02 8.584E-03
7 1.341E-02 8.721E-03 1.372E-02 8.000E-03 1.373E-02 8.075E-03 1.383E-02 7.782E-03 1.314E-02 8.529E-03
8 1.331E-02 8.728E-03 1.373E-02 7.992E-03 1.373E-02 8.007E-03 1.362E-02 8.195E-03 1.298E-02 8.701E-03
9 1.326E-02 8.924E-03 1.377E-02 7.907E-03 1.373E-02 8.077E-03 1.386E-02 7.779E-03 1.328E-02 8.582E-03
10 1.360E-02 8.401E-03 1.380E-02 7.876E-03 1.383E-02 7.826E-03 1.387E-02 7.751E-03 1.327E-02 8.473E-03
11 1.341E-02 8.680E-03 1.374E-02 7.956E-03 1.368E-02 8.185E-03 1.370E-02 8.175E-03 1.249E-02 9.286E-03
12 1.314E-02 9.063E-03 1.377E-02 7.911E-03 1.318E-02 8.923E-03 1.393E-02 7.723E-03 1.317E-02 8.671E-03
13 1.336E-02 8.748E-03 1.379E-02 7.895E-03 1.375E-02 8.025E-03 1.382E-02 7.891E-03 1.257E-02 9.439E-03
14 1.321E-02 8.994E-03 1.379E-02 7.847E-03 1.339E-02 8.621E-03 1.386E-02 7.772E-03 1.337E-02 8.378E-03
15 1.332E-02 8.833E-03 1.371E-02 8.036E-03 1.373E-02 8.004E-03 1.371E-02 8.103E-03 1.257E-02 9.226E-03
16 1.350E-02 8.523E-03 1.374E-02 8.002E-03 1.363E-02 8.234E-03 1.377E-02 7.875E-03 1.287E-02 8.795E-03
17 1.347E-02 8.503E-03 1.376E-02 7.974E-03 1.372E-02 8.080E-03 1.382E-02 7.797E-03 1.278E-02 9.126E-03
18 1.341E-02 8.522E-03 1.377E-02 7.933E-03 1.376E-02 7.881E-03 1.352E-02 8.486E-03 1.348E-02 8.230E-03
19 1.370E-02 8.084E-03 1.372E-02 8.022E-03 1.371E-02 8.007E-03 1.380E-02 7.904E-03 1.353E-02 8.284E-03
20 1.311E-02 8.896E-03 1.375E-02 7.971E-03 1.378E-02 7.933E-03 1.378E-02 7.976E-03 1.297E-02 8.998E-03
µ 1.3348E-02 8.7302E-03 1.3745E-02 7.9708E-03 1.3684E-02 8.1102E-03 1.3783E-02 7.9301E-03 1.3055E-02 8.7426E-03
σ 1.4652E-04 2.3502E-04 3.8403E-05 7.6349E-05 1.6206E-04 2.9978E-04 1.0143E-04 1.9955E-04 2.8648E-04 3.2258E-04
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Table A-6: Evaluation Metrics of F s
F friction model.

Test ACO BBO DE GA PSO
number εEst εVal εEst εVal εEst εVal εEst εVal εEst εVal
1 1.319E-02 9.011E-03 1.374E-02 8.025E-03 1.372E-02 8.087E-03 1.385E-02 7.818E-03 1.367E-02 8.064E-03
2 1.352E-02 8.581E-03 1.363E-02 8.282E-03 1.347E-02 8.582E-03 1.374E-02 8.132E-03 1.359E-02 8.192E-03
3 1.339E-02 8.822E-03 1.377E-02 7.961E-03 1.371E-02 8.111E-03 1.379E-02 7.898E-03 1.373E-02 7.946E-03
4 1.334E-02 8.915E-03 1.371E-02 8.040E-03 1.378E-02 7.921E-03 1.367E-02 8.222E-03 1.366E-02 8.022E-03
5 1.334E-02 8.774E-03 1.375E-02 7.998E-03 1.364E-02 8.272E-03 1.368E-02 8.103E-03 1.354E-02 8.373E-03
6 1.357E-02 8.445E-03 1.376E-02 7.977E-03 1.382E-02 7.858E-03 1.366E-02 8.209E-03 1.347E-02 8.425E-03
7 1.345E-02 8.660E-03 1.374E-02 8.001E-03 1.367E-02 8.206E-03 1.358E-02 8.438E-03 1.375E-02 7.925E-03
8 1.362E-02 8.391E-03 1.371E-02 8.089E-03 1.375E-02 8.019E-03 1.387E-02 7.834E-03 1.356E-02 8.450E-03
9 1.323E-02 9.022E-03 1.361E-02 8.290E-03 1.357E-02 8.425E-03 1.383E-02 7.844E-03 1.357E-02 8.412E-03
10 1.335E-02 8.855E-03 1.379E-02 7.922E-03 1.370E-02 8.145E-03 1.381E-02 7.900E-03 1.359E-02 8.302E-03
11 1.332E-02 8.895E-03 1.377E-02 7.976E-03 1.371E-02 8.119E-03 1.364E-02 8.043E-03 1.375E-02 7.994E-03
12 1.321E-02 9.083E-03 1.375E-02 8.016E-03 1.362E-02 8.322E-03 1.392E-02 7.833E-03 1.373E-02 7.976E-03
13 1.339E-02 8.769E-03 1.378E-02 7.927E-03 1.370E-02 8.139E-03 1.374E-02 7.915E-03 1.354E-02 8.304E-03
14 1.347E-02 8.684E-03 1.375E-02 7.992E-03 1.345E-02 8.671E-03 1.369E-02 7.997E-03 1.346E-02 8.296E-03
15 1.353E-02 8.625E-03 1.374E-02 8.011E-03 1.368E-02 8.175E-03 1.392E-02 7.835E-03 1.366E-02 8.195E-03
16 1.342E-02 8.829E-03 1.376E-02 7.986E-03 1.374E-02 8.039E-03 1.366E-02 8.283E-03 1.361E-02 8.166E-03
17 1.332E-02 8.968E-03 1.370E-02 8.116E-03 1.334E-02 8.906E-03 1.359E-02 8.422E-03 1.368E-02 8.078E-03
18 1.342E-02 8.652E-03 1.375E-02 7.999E-03 1.367E-02 8.207E-03 1.386E-02 7.804E-03 1.368E-02 8.023E-03
19 1.296E-02 9.436E-03 1.374E-02 7.991E-03 1.383E-02 7.843E-03 1.362E-02 8.193E-03 1.360E-02 8.160E-03
20 1.324E-02 8.851E-03 1.376E-02 7.972E-03 1.365E-02 8.251E-03 1.377E-02 8.090E-03 1.343E-02 8.522E-03
µ 1.3364E-02 8.8135E-03 1.3736E-02 8.0286E-03 1.3662E-02 8.2149E-03 1.3744E-02 8.0406E-03 1.3614E-02 8.1913E-03
σ 1.4802E-04 2.3032E-04 4.3594E-05 9.6708E-05 1.2024E-04 2.5980E-04 1.0374E-04 1.9899E-04 9.3639E-05 1.8050E-04
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Table A-7: Evaluation Metrics of F a
T friction model.

Test ACO BBO DE GA PSO
number εEst εVal εEst εVal εEst εVal εEst εVal εEst εVal
1 1.351E-02 8.286E-03 1.369E-02 9.100E-03 1.363E-02 8.250E-03 1.388E-02 1.029E-02 1.360E-02 8.367E-03
2 1.381E-02 8.812E-03 1.368E-02 8.713E-03 1.367E-02 9.655E-03 1.364E-02 9.994E-03 1.375E-02 9.053E-03
3 1.377E-02 9.490E-03 1.369E-02 8.614E-03 1.370E-02 1.033E-02 1.369E-02 8.421E-03 1.407E-02 9.520E-03
4 1.397E-02 1.022E-02 1.372E-02 8.417E-03 1.370E-02 9.051E-03 1.348E-02 7.787E-03 1.373E-02 8.437E-03
5 1.380E-02 8.389E-03 1.358E-02 9.183E-03 1.369E-02 7.419E-03 1.361E-02 8.760E-03 1.395E-02 9.547E-03
6 1.356E-02 7.720E-03 1.366E-02 8.581E-03 1.369E-02 9.300E-03 1.382E-02 7.467E-03 1.424E-02 9.145E-03
7 1.363E-02 8.794E-03 1.374E-02 8.863E-03 1.369E-02 7.040E-03 1.381E-02 8.720E-03 1.353E-02 8.371E-03
8 1.364E-02 8.953E-03 1.366E-02 8.877E-03 1.370E-02 1.005E-02 1.368E-02 9.160E-03 1.379E-02 9.413E-03
9 1.414E-02 9.657E-03 1.366E-02 8.763E-03 1.372E-02 8.604E-03 1.370E-02 9.463E-03 1.365E-02 8.438E-03
10 1.352E-02 7.271E-03 1.369E-02 8.865E-03 1.363E-02 5.971E-03 1.357E-02 7.566E-03 1.375E-02 9.894E-03
11 1.367E-02 9.272E-03 1.369E-02 9.169E-03 1.365E-02 5.817E-03 1.358E-02 8.166E-03 1.395E-02 8.294E-03
12 1.364E-02 1.023E-02 1.367E-02 8.820E-03 1.367E-02 8.023E-03 1.360E-02 7.201E-03 1.410E-02 8.976E-03
13 1.358E-02 7.614E-03 1.372E-02 8.372E-03 1.369E-02 8.802E-03 1.382E-02 9.659E-03 1.370E-02 8.283E-03
14 1.362E-02 9.303E-03 1.374E-02 8.418E-03 1.373E-02 7.767E-03 1.388E-02 8.655E-03 1.408E-02 9.016E-03
15 1.376E-02 1.125E-02 1.370E-02 8.562E-03 1.372E-02 8.792E-03 1.389E-02 8.656E-03 1.384E-02 9.205E-03
16 1.369E-02 9.172E-03 1.367E-02 8.788E-03 1.370E-02 9.990E-03 1.392E-02 8.471E-03 1.394E-02 8.215E-03
17 1.371E-02 7.681E-03 1.366E-02 9.096E-03 1.371E-02 8.463E-03 1.346E-02 8.824E-03 1.366E-02 9.361E-03
18 1.393E-02 1.005E-02 1.368E-02 8.461E-03 1.369E-02 8.852E-03 1.383E-02 8.508E-03 1.377E-02 8.464E-03
19 1.367E-02 7.688E-03 1.368E-02 9.110E-03 1.370E-02 7.231E-03 1.380E-02 9.185E-03 1.368E-02 8.554E-03
20 1.382E-02 1.123E-02 1.370E-02 8.684E-03 1.372E-02 8.846E-03 1.332E-02 7.811E-03 1.422E-02 9.686E-03
µ 1.372E-02 9.054E-03 1.368E-02 8.773E-03 1.369E-02 8.413E-03 1.370E-02 8.638E-03 1.385E-02 8.912E-03
σ 1.543E-04 1.138E-03 3.410E-05 2.557E-04 2.606E-05 1.222E-03 1.624E-04 8.132E-04 2.015E-04 5.290E-04
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Table A-8: Evaluation Metrics of F s
T friction model.

Test ACO BBO DE GA PSO
number εEst εVal εEst εVal εEst εVal εEst εVal εEst εVal
1 1.380E-02 8.437E-03 1.372E-02 9.130E-03 1.370E-02 9.674E-03 1.356E-02 1.001E-02 1.373E-02 9.231E-03
2 1.380E-02 7.953E-03 1.374E-02 9.069E-03 1.370E-02 9.306E-03 1.352E-02 8.949E-03 1.423E-02 7.123E-03
3 1.382E-02 8.862E-03 1.370E-02 9.239E-03 1.370E-02 9.289E-03 1.389E-02 8.675E-03 1.402E-02 9.158E-03
4 1.376E-02 9.587E-03 1.374E-02 8.961E-03 1.371E-02 9.239E-03 1.380E-02 8.678E-03 1.372E-02 9.019E-03
5 1.376E-02 7.789E-03 1.381E-02 8.613E-03 1.372E-02 9.305E-03 1.377E-02 9.226E-03 1.387E-02 9.263E-03
6 1.377E-02 8.130E-03 1.371E-02 8.748E-03 1.371E-02 9.236E-03 1.374E-02 9.464E-03 1.377E-02 9.362E-03
7 1.381E-02 7.542E-03 1.369E-02 9.108E-03 1.374E-02 8.508E-03 1.367E-02 1.052E-02 1.379E-02 9.682E-03
8 1.366E-02 9.197E-03 1.373E-02 9.282E-03 1.370E-02 9.784E-03 1.394E-02 1.030E-02 1.388E-02 8.556E-03
9 1.382E-02 9.740E-03 1.371E-02 9.134E-03 1.371E-02 8.868E-03 1.375E-02 9.253E-03 1.369E-02 8.481E-03
10 1.397E-02 8.171E-03 1.371E-02 9.372E-03 1.371E-02 9.517E-03 1.354E-02 1.101E-02 1.371E-02 8.922E-03
11 1.381E-02 8.486E-03 1.371E-02 9.348E-03 1.370E-02 9.688E-03 1.382E-02 8.571E-03 1.374E-02 9.053E-03
12 1.378E-02 9.361E-03 1.375E-02 8.862E-03 1.369E-02 1.097E-02 1.370E-02 8.933E-03 1.381E-02 9.096E-03
13 1.368E-02 1.011E-02 1.375E-02 9.012E-03 1.374E-02 8.632E-03 1.359E-02 1.006E-02 1.371E-02 8.461E-03
14 1.366E-02 8.820E-03 1.369E-02 9.460E-03 1.371E-02 9.385E-03 1.432E-02 1.069E-02 1.410E-02 7.803E-03
15 1.409E-02 8.712E-03 1.369E-02 9.203E-03 1.371E-02 9.385E-03 1.369E-02 1.022E-02 1.394E-02 9.214E-03
16 1.388E-02 9.061E-03 1.387E-02 9.357E-03 1.375E-02 9.114E-03 1.380E-02 9.826E-03 1.374E-02 8.887E-03
17 1.392E-02 8.061E-03 1.371E-02 9.163E-03 1.370E-02 9.818E-03 1.371E-02 9.461E-03 1.369E-02 9.160E-03
18 1.372E-02 9.928E-03 1.379E-02 8.879E-03 1.370E-02 9.290E-03 1.363E-02 1.095E-02 1.382E-02 9.919E-03
19 1.384E-02 9.067E-03 1.375E-02 9.148E-03 1.369E-02 9.517E-03 1.374E-02 8.945E-03 1.389E-02 8.987E-03
20 1.375E-02 7.994E-03 1.373E-02 8.807E-03 1.368E-02 9.638E-03 1.369E-02 9.771E-03 1.387E-02 8.965E-03
µ 1.381E-02 8.751E-03 1.373E-02 9.095E-03 1.371E-02 9.408E-03 1.374E-02 9.675E-03 1.384E-02 8.917E-03
σ 1.000E-04 7.302E-04 4.384E-05 2.217E-04 1.824E-05 4.937E-04 1.708E-04 7.556E-04 1.430E-04 6.028E-04
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Table A-9: Evaluation Metrics of F a
V friction model.

Test ACO BBO DE GA PSO
number εEst εVal εEst εVal εEst εVal εEst εVal εEst εVal
1 1.3937E-02 7.770E-03 1.3653E-02 7.999E-03 1.3692E-02 7.995E-03 1.3743E-02 7.919E-03 1.3693E-02 8.027E-03
2 1.3735E-02 7.987E-03 1.3687E-02 7.969E-03 1.3679E-02 8.031E-03 1.3568E-02 8.080E-03 1.3701E-02 8.016E-03
3 1.3864E-02 7.836E-03 1.3687E-02 7.975E-03 1.3619E-02 8.035E-03 1.3705E-02 7.952E-03 1.3904E-02 7.803E-03
4 1.3849E-02 7.868E-03 1.3641E-02 8.008E-03 1.3693E-02 8.017E-03 1.3556E-02 8.091E-03 1.3698E-02 8.015E-03
5 1.3865E-02 7.856E-03 1.3668E-02 8.005E-03 1.3608E-02 8.045E-03 1.3677E-02 8.018E-03 1.3703E-02 8.012E-03
6 1.3679E-02 8.059E-03 1.3662E-02 7.991E-03 1.3681E-02 8.039E-03 1.3708E-02 7.925E-03 1.3714E-02 7.970E-03
7 1.3626E-02 8.090E-03 1.3659E-02 7.975E-03 1.3680E-02 8.032E-03 1.3616E-02 8.042E-03 1.3704E-02 7.973E-03
8 1.3768E-02 7.922E-03 1.3677E-02 7.975E-03 1.3623E-02 8.035E-03 1.3628E-02 8.061E-03 1.3742E-02 7.980E-03
9 1.3740E-02 7.998E-03 1.3688E-02 7.976E-03 1.3696E-02 7.946E-03 1.3468E-02 8.177E-03 1.3744E-02 7.948E-03
10 1.3742E-02 7.991E-03 1.3637E-02 8.032E-03 1.3683E-02 8.029E-03 1.3637E-02 8.016E-03 1.3750E-02 7.967E-03
11 1.3675E-02 8.042E-03 1.3640E-02 8.004E-03 1.3715E-02 8.003E-03 1.3664E-02 7.995E-03 1.3678E-02 7.993E-03
12 1.3770E-02 7.910E-03 1.3651E-02 7.997E-03 1.3709E-02 8.001E-03 1.3664E-02 8.011E-03 1.3665E-02 7.995E-03
13 1.3611E-02 8.103E-03 1.3684E-02 7.997E-03 1.3682E-02 8.030E-03 1.3612E-02 8.011E-03 1.3727E-02 7.955E-03
14 1.3690E-02 8.028E-03 1.3654E-02 8.008E-03 1.3690E-02 8.012E-03 1.3626E-02 8.068E-03 1.3696E-02 8.015E-03
15 1.3507E-02 8.210E-03 1.3650E-02 8.009E-03 1.3657E-02 8.006E-03 1.3623E-02 8.067E-03 1.3718E-02 7.991E-03
16 1.3680E-02 8.051E-03 1.3662E-02 7.986E-03 1.3645E-02 8.022E-03 1.3673E-02 7.979E-03 1.3743E-02 7.985E-03
17 1.3820E-02 7.841E-03 1.3683E-02 7.957E-03 1.3645E-02 8.010E-03 1.3733E-02 7.915E-03 1.3663E-02 8.049E-03
18 1.3827E-02 7.855E-03 1.3662E-02 7.989E-03 1.3644E-02 8.047E-03 1.3683E-02 7.959E-03 1.3768E-02 7.954E-03
19 1.3496E-02 8.242E-03 1.3676E-02 7.983E-03 1.3668E-02 8.022E-03 1.3696E-02 7.973E-03 1.3745E-02 7.968E-03
20 1.3745E-02 7.975E-03 1.3646E-02 7.999E-03 1.3717E-02 7.996E-03 1.3728E-02 7.976E-03 1.3721E-02 7.974E-03
µ 1.3731E-02 7.982E-03 1.3663E-02 7.992E-03 1.3671E-02 8.018E-03 1.3650E-02 8.012E-03 1.3724E-02 7.980E-03
σ 1.1252E-04 1.230E-04 1.6604E-05 1.699E-05 3.0972E-05 2.261E-05 6.5562E-05 6.467E-05 4.9874E-05 4.822E-05
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Table A-10: Evaluation Metrics of F s
V friction model.

Test ACO BBO DE GA PSO
number εEst εVal εEst εVal εEst εVal εEst εVal εEst εVal
1 1.3629E-02 8.089E-03 1.3632E-02 8.064E-03 1.362E-02 8.093E-03 1.3601E-02 8.138E-03 1.3650E-02 8.193E-03
2 1.3582E-02 8.118E-03 1.3669E-02 8.025E-03 1.371E-02 8.033E-03 1.3633E-02 8.083E-03 1.3630E-02 8.162E-03
3 1.3640E-02 8.131E-03 1.3620E-02 8.079E-03 1.363E-02 8.107E-03 1.3637E-02 8.053E-03 1.3679E-02 8.097E-03
4 1.3538E-02 8.215E-03 1.3682E-02 8.035E-03 1.362E-02 8.076E-03 1.3441E-02 8.309E-03 1.3575E-02 8.169E-03
5 1.3355E-02 8.395E-03 1.3647E-02 8.061E-03 1.363E-02 8.104E-03 1.3652E-02 8.063E-03 1.3659E-02 8.105E-03
6 1.3590E-02 8.165E-03 1.3672E-02 8.059E-03 1.364E-02 8.087E-03 1.3510E-02 8.214E-03 1.3631E-02 8.072E-03
7 1.3755E-02 8.005E-03 1.3651E-02 8.112E-03 1.371E-02 8.048E-03 1.3660E-02 8.084E-03 1.3605E-02 8.197E-03
8 1.3637E-02 8.111E-03 1.3648E-02 8.048E-03 1.365E-02 8.113E-03 1.3436E-02 8.277E-03 1.3651E-02 8.129E-03
9 1.3649E-02 8.106E-03 1.3645E-02 8.057E-03 1.362E-02 8.118E-03 1.3756E-02 7.999E-03 1.3645E-02 8.117E-03
10 1.3929E-02 7.756E-03 1.3632E-02 8.069E-03 1.366E-02 8.090E-03 1.3623E-02 8.135E-03 1.3616E-02 8.104E-03
11 1.3555E-02 8.207E-03 1.3626E-02 8.083E-03 1.359E-02 8.086E-03 1.3502E-02 8.205E-03 1.3657E-02 8.098E-03
12 1.3628E-02 8.136E-03 1.3657E-02 8.064E-03 1.363E-02 8.088E-03 1.3659E-02 8.086E-03 1.3598E-02 8.144E-03
13 1.3644E-02 8.121E-03 1.3664E-02 8.040E-03 1.366E-02 8.098E-03 1.3583E-02 8.139E-03 1.3674E-02 8.109E-03
14 1.3621E-02 8.127E-03 1.3664E-02 8.032E-03 1.365E-02 8.051E-03 1.3584E-02 8.130E-03 1.3661E-02 8.126E-03
15 1.3692E-02 8.070E-03 1.3650E-02 8.055E-03 1.364E-02 8.094E-03 1.3438E-02 8.268E-03 1.3613E-02 8.236E-03
16 1.3629E-02 8.128E-03 1.3598E-02 8.123E-03 1.363E-02 8.092E-03 1.3830E-02 7.876E-03 1.3625E-02 8.129E-03
17 1.3692E-02 8.076E-03 1.3688E-02 8.004E-03 1.361E-02 8.100E-03 1.3657E-02 8.028E-03 1.3625E-02 8.073E-03
18 1.3699E-02 7.995E-03 1.3636E-02 8.051E-03 1.368E-02 8.050E-03 1.3532E-02 8.204E-03 1.3601E-02 8.118E-03
19 1.3865E-02 7.877E-03 1.3638E-02 8.059E-03 1.357E-02 8.136E-03 1.3624E-02 8.125E-03 1.3657E-02 8.125E-03
20 1.3647E-02 8.068E-03 1.3694E-02 8.021E-03 1.363E-02 8.062E-03 1.3668E-02 8.045E-03 1.3670E-02 8.113E-03
µ 1.3649E-02 8.095E-03 1.3651E-02 8.057E-03 1.364E-02 8.086E-03 1.3601E-02 8.123E-03 1.3636E-02 8.131E-03
σ 1.1405E-04 1.245E-04 2.3342E-05 2.783E-05 3.378E-05 2.536E-05 1.0005E-04 1.016E-04 2.7813E-05 4.102E-05
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